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PROGRAMS IN COMPUTER SCIENCE

Some programs make a computation, get a result, and
then stop. Other ones have to maintain the good behaviour
of a system:

Operating systems (Internet)
safety systems (power plant, . . . )
aircraft autopilot

In particular, these systems are in relation with an
environment, and must have the “good” response to any
changes of the environment.

Olivier Finkel The determinacy of infinite games specified by automata



INFINITE GAMES

The system in relation with an environment may be specified by
an infinite game between two players.

Two players:
Player 1 : the computer program
Player 2 : the environment

The possible actions of the players are represented by
letters of a finite alphabet A.
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INFINITE PLAY

The two players compose an infinite word over the
alphabet A:

Player 1 : a1 a3 a5
↘ ↗ ↘ ↗ ↘ · · ·

Player 2 : a2 a4 a6

The infinite word a1.a2.a3 . . . représents the infinite
behaviour of the system.

A good behaviour is represented by a set of infinite words
L ⊆ Aω called the winning set for Player 1.

The above game, with perfect information, is a Gale-Stewart
game G(L).
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WINNING STRATEGIES

A strategy for Player 1 is a mapping f : (A2)? −→ A. Player 1
follows the strategy f iff ∀n ≥ 1: a2n+1 = f (a1a2 . . . a2n).

The strategy f is winning for Player 1 if it ensures a good
behaviour of the system, i.e. such that : the infinite word
written by the two players belongs to the winning set L:

a1.a2.a3 . . . ∈ L

A winning strategy for Player 2 is a strategy for Player 2
which ensures that a1.a2.a3 . . . /∈ L.

A Gale-Stewart game G(L) is determined iff one of the two
players has a winning strategy.
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WINNING STRATEGIES

The important problems to solve in practice are:

(1) Is the game G(L) determined ?
(2) Which player has a winning strategy ?
(3) If Player 1 has a winning strategy, can we effectively

construct this winning strategy ? Is it computable ?
(4) What is the complexity of this construction ? What are the

necessary amounts of time and space ?
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COMPLEXITY OF WINNING SETS

The winning set for Player 1 is often given as the set of infinite
behaviours which satisfy a logical formula.

It is also often given as the set of infinite words accepted by a
finite automaton, a one-counter automaton, a pushdown
automaton, . . . with a Büchi acceptance condition . . .
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Büchi acceptance condition

An automaton A reading infinite words over the alphabet Σ is
equipped with a finite set of states K and a set of final states
F ⊆ K .

A run of A reading an infinite word σ ∈ Σω is said to be
accepting iff there is some state qf ∈ F appearing infinitely
often during the reading of σ.

An infinite word σ ∈ Σω is accepted by A if there is (at least )
one accepting run of A on σ.

An ω-language L ⊆ Σω is accepted by A if it is the set of infinite
words σ ∈ Σω accepted by A.
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Context free or regular ω-languages

( Cohen and Gold 1977; Linna 1976 )
Let L ⊆ Σω. Then the following propositions are equivalent :

L is accepted by a Büchi pushdown automaton.
L =

⋃
1≤i≤n Ui .Vω

i ,
for some context free finitary languages Ui and Vi .
L is a context free ω-language.

A similar theorem holds if we:
• omit the pushdown stack and replace context free by regular,
• or replace pushdown and context-free by 1-counter.
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Regular winning sets

Büchi and Landweber solved the famous Church’s Problem
posed in 1957, Rabin gave an alternative solution:

Theorem (Büchi-Landweber 1969; Rabin 1972)
If L ⊆ Σω is a regular ω-language then:

The game G(L) is determined.
One can decide which Player has a winning strategy.
On can construct effectively a winning strategy given by a
finite state transducer.
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Deterministic context free winning sets

Walukiewicz extended this to the case of deterministic context
free winning sets:

Theorem (Walukiewicz 1996)
If L ⊆ Σω is a deterministic context free ω-language then:

The game G(L) is determined.
One can decide which Player has a winning strategy.
On can construct effectively a winning strategy given by a
pushdown transducer.

Further extension to deterministic higher-order pushdown
automata ([Cachat 2003], [Carayol, Hagues, Meyer, Ong, Serre
2008])
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The question of the determinacy

The question remained open for non-deterministic pushdown
(or even one-counter) automata.

First question: determinacy of these games ?

The determinacy of regular or deterministic context-free games
follows from the determinacy of Borel games (Martin 1975).

It involves the notion of topological complexity of the winning
sets. A way to study the complexity of ω-languages is to
consider their topological complexity.
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Topology on Σω

The natural prefix metric on the set Σω of ω-words over Σ is
defined as follows:

For u, v ∈ Σω and u 6= v let

δ(u, v) = 2−n

where n is the least integer such that:

the (n + 1)st letter of u is different from the (n + 1)st letter of v .

This metric induces on Σω the usual Cantor topology for which :

open subsets of Σω are in the form W .Σω, where W ⊆ Σ?.
closed subsets of Σω are complements of open subsets of
Σω.
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Borel subsets of Σω

The class of Borel subsets of Σω is the closure of the class of
open sets

under countable union and countable intersection, or
equivalently,
under countable union and complementation.
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Complexity of ω-Languages of Non Deterministic
Turing Machines

Non deterministic Büchi (or Muller) Turing machines accept
effective analytic sets (Staiger). The class Effective-Σ1

1 is the
class of projections of arithmetical sets.

There are some non-Borel sets in the class Effective-Σ1
1.

Theorem
[Ressayre and F. 2003] There are some non-Borel
context-free (and even 1-counter) ω-languages.
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The (effective) analytic determinacy

The determinacy of games G(L) with L effective analytic is not
provable in ZFC, the commonly accepted axiomatic system in
which all usual mathematics can be developped.

Theorem (Martin 1970 and Harrington 1978)
The effective analytic determinacy is equivalent to the existence
of a particular real called 0].
The existence of the real 0] is known in set theory to be a large
cardinal assumption, and is not provable in ZFC.
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The constructible sets in a model V of ZF

The class L of constructible sets in a model V of ZF is defined
by

L =
⋃
α∈ON

L(α)

where the sets L(α) are constructed by induction as follows:

1 L(0) = ∅
2 L(α) =

⋃
β<α L(β), for α a limit ordinal, and

3 L(α + 1) is the set of subsets of L(α) which are definable
from a finite number of elements of L(α) by a first-order
formula relativized to L(α).

If V is a model of ZF and L is the class of constructible sets of
V, then the class L forms a model of ZFC + CH.
The axiom (V=L) means “every set is constructible” and is
consistent with ZFC.
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The real 0]

A set of ordinals C is a set of indiscernibles in the constructible
universe L iff:

• For each first-order formula ϕ(x1, . . . , xn) in the language of
set theory,

• For all finite sequences αi1 < αi2 < . . . < αin and
βi1 < βi2 < . . . < βin of ordinals in C, it holds that:

L |= ϕ(αi1 , αi2 , . . . , αin )⇐⇒ L |= ϕ(βi1 , βi2 , . . . , βin )
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The real 0]

The existence of the real 0] in a model V of ZFC is equivalent to
the existence of an uncountable set of indiscernible ordinals in
the constructible universe L.
(The existence of such a set was proven firstly by Silver from
the existence of a Ramsey cardinal in 1966)

• The real 0] is the code in 2ω of a set of integers, the set of
Gödel numbers of formulas which are satisfied by an
uncountable set of indiscernibles ordinals in L.

• The existence of the real 0] is equivalent to the existence of a
non-trivial elementary embedding j : L→ L.

Olivier Finkel The determinacy of infinite games specified by automata



The context-free determinacy

Theorem (F. 2011)
The determinacy of games G(L), where L is accepted by a
real-time 1-counter Büchi automaton, is equivalent to the
effective analytic determinacy and also to the existence of the
real 0] and thus it is not provable in ZFC.
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Sketch of the proof

We start from an effective analytic set L(T ) accepted by a
Büchi Turing machine T , which can be simulated by a (non real
time) 2-counter automaton.

We successively construct:

A 2-counter Büchi automaton A1,
A real time 8-counter Büchi automaton A2,
A real time 1-counter Büchi automaton A3,

such that Player 1 (resp. Player 2) has a winning strategy in
G(L(T )) if and only if Player 1 (resp. Player 2) has a winning
strategy in the game G(L(A1)), (and similarly for G(L(A2)),
G(L(A3)).

Thus the game G(L(T )) is determined iff the game G(L(A1)),
(resp. G(L(A2)), G(L(A3)) ) is determined.
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Games with non-recursive strategies when they
exist

Theorem ( F. 2011 )
There exists a 1-counter Büchi automaton A such that:

(1) (ZFC+ ωL
1 < ω1 ): Player 1 has a winning strategy σ in the

game G(L(A)). But σ cannot be recursive and not even
hyperarithmetical.

(2) ( ZFC + ωL
1 = ω1 ): the game G(L(A)) is not determined.

Moreover these are the only two possibilities: there are no
models of ZFC in which Player 2 has a winning strategy.
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Games with non-recursive strategies when they
exist

Theorem ( F. 2013 )
There exist a real-time 1-counter Büchi automaton A such that
the ω-language L(A) is an arithmetical ∆0

3-set and such that
Player 2 has a winning strategy in the game G(L(A)) but has
no hyperarithmetical winning strategies in this game.
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One cannot decide who wins a 1-counter game

Theorem
There exists a recursive sequence of real time 1-counter Büchi
automata An, n ≥ 1, such that all games G(L(An)) are
determined. But it is Π1

2-complete (hence highly undecidable) to
determine whether Player 1 has a winning strategy in the game
G(L(An)).
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Games of maximum strength of determinacy

Theorem ( F. 2012 )
There exists a 1-counter Büchi automaton A] such that:
The game G(A]) is determined iff the effective analytic
determinacy holds iff all 1-counter games are determined.

Are there two or more strengths of determinacy ?
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A transfinite sequence of 1-counter Büchi
automata

A transfinite sequence of games specified by real-time
1-counter Büchi automata with increasing strength of
determinacy.

Theorem ( F. 2012 )
There is a transfinite sequence of real-time 1-counter Büchi
automata (Aα)α<ωCK

1
, indexed by recursive ordinals, s.t.:

∀α < β < ωCK
1 [ Det(G(L(Aβ))) =⇒ Det(G(L(Aα))) ]

but the converse is not true:

For each recursive ordinal α there is a model Vα of ZFC such
that in this model the game G(L(Aβ)) is determined iff β < α.

Olivier Finkel The determinacy of infinite games specified by automata



Games specified by 2-tape Büchi automata

The two players compose an infinite word over the
alphabet A× B:

Player 1 : (a1,b1) (a3,b3) (a5,b5)
↘ ↗ ↘ ↗ ↘ · · ·

Player 2 : (a2,b2) (a4,b4)

The infinite word (a1,b1).(a2,b2).(a3,b3) . . . ∈ (A× B)ω

represents the infinite behaviour of the system.

A good behaviour is represented by a set of infinite words
L(A) ⊆ (A× B)ω accepted by a 2-tape Büchi automaton A.
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The question of the determinacy

Theorem (F. 2012)
The determinacy of games G(L), where L is accepted by a
2-tape (asynchronous) Büchi automaton, is equivalent to the
effective analytic determinacy, and thus it is not provable in
ZFC.
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Sketch of the proof

We start from an ω-language accepted by a real time 1-counter
Büchi automaton A.

We construct, from A, a 2-tape Büchi automaton B such that
Player 1 (resp. Player 2) has a winning strategy in G(L(A)) if
and only if Player 1 (resp. Player 2) has a winning strategy in
the game G(L(B)).

The game G(L(A)) is determined iff the game G(L(B)) is
determined.
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Games with non-recursive strategies

Theorem ( F. 2012 )
There exists a 2-tape Büchi automaton A such that:

(1) There is a model V1 of ZFC in which Player 1 has a winning
strategy σ in the game G(L(A)). But σ cannot be recursive
and not even hyperarithmetical.

(2) There is a model V2 of ZFC in which the game G(L(A)) is
not determined.
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A transfinite sequence of 2-tape Büchi automata

A transfinite sequence of games specified by 2-tape Büchi
automata with increasing strength of determinacy.

Theorem ( F. 2012 )
There is a transfinite sequence of 2-tape Büchi automata
(Aα)α<ωCK

1
, indexed by recursive ordinals, s.t.:

∀α < β < ωCK
1 [ Det(G(L(Aβ))) =⇒ Det(G(L(Aα))) ]

but the converse is not true:

For each recursive ordinal α there is a model Vα of ZFC such
that in this model the game G(L(Aβ)) is determined iff β < α.
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THANK YOU !
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Wadge Reducibility

Definition (Wadge 1972)

For L ⊆ Xω and L′ ⊆ Yω, L ≤W L′ iff there exists a continuous
function f : Xω → Yω, such that L = f−1(L′).

L and L′ are Wadge equivalent (L ≡W L′) iff L ≤W L′ and
L′ ≤W L. .

The relation ≤W is reflexive and transitive, and ≡W is an
equivalence relation. The equivalence classes of ≡W are called
Wadge degrees.

Intuitively L ≤W L′ means that L is less complicated than L′

because to check whether x ∈ L it suffices to check whether
f (x) ∈ L′ where f is a continuous function.
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Wadge Degrees

Hence the Wadge degree of an ω-language is a measure of its
topological complexity.

Wadge degrees were firstly studied by Wadge for Borel
sets using Wadge games.

There is a close relationship between Wadge reducibility and
games:
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Wadge Games

Definition (Wadge 1972)

Let L ⊆ Xω and L′ ⊆ Yω. The Wadge game W (L,L′) is a game
with perfect information between two players, Player 1 who is in
charge of L and Player 2 who is in charge of L′.

The two players alternatively write letters an of X for Player 1
and bn of Y for player 2.
Player 2 is allowed to skip, even infinitely often, provided he
really writes an ω-word in ω steps.

After ω steps, Player 1 has written an ω-word a ∈ Xω and
Player 2 has written b ∈ Yω.
Player 2 wins the play iff [a ∈ L↔ b ∈ L′], i.e. iff :

[(a ∈ L and b ∈ L′) or (a /∈ L and b /∈ L′ )].
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Wadge Games

Theorem (Wadge)

Let L ⊆ Xω and L′ ⊆ Yω. Then L ≤W L′ iff Player 2 has a
winning strategy in the game W (L,L′).

By Martin’s Theorem, the Wadge game W (L,L′), for Borel sets
L and L′, is determined: One of the two players has a winning
strategy.

−→ Study of the Wadge hierarchy on Borel sets.

Theorem (Harrington 1978, Friedman 1971)

The determinacy of Wadge games W (L,L′), where L and L′ are
effective analytic sets, is equivalent to the determinacy of
effective analytic Gale-Stewart games, and thus it is not
provable in ZFC.
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The context-free Wadge determinacy

Theorem (F. 2011)
The determinacy of Wadge games W (L(A),L(B)), where A
and B are real-time 1-counter Büchi automata, is equivalent to
the effective analytic (Wadge) determinacy, and thus it is not
provable in ZFC.
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The Topological complexity of a 1-counter
ω-language depends on the models of ZFC

Theorem ( F. 2009 )
There exists a 1-counter Büchi automaton A such that the
topological complexity of the ω-language L(A) is not
determined by the axiomatic system ZFC.

1 There is a model V1 of ZFC in which the ω-language L(A)
is an analytic but non Borel set.

2 There is a model V2 of ZFC in which the ω-language L(A)
is a Gδ-set (i.e. Π0

2-set).
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Wadge Games Between 1-Counter Automata

The ω-language (0? · 1)ω ⊆ {0,1}ω is ω-regular, accepted by a
Büchi automaton B, and is Π0

2-complete in every model of ZFC.
This implies:

Theorem ( F. 2010 )
There exists a 1-counter Büchi automaton A and a Büchi
automaton B such that L(A) ≤W L(B) is independent from ZFC:

(1) There is a model V1 of ZFC in which Player 2 has a winning
strategy σ in the Wadge game W (L(A),L(B)). But σ is not
recursive and not even hyperarithmetical.

(2) There is a model V2 of ZFC in which Player 2 has no
winning strategy in the Wadge game W (L(A),L(B)). Moreover
Player 1 has no winning strategy, and the game is not
determined.
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