The Complexity of Maximal Block Functions of η-like Computable Linear Oderings.

Charles M. Harris

Department Of Mathematics
University of Bristol

Journées Calculabilités 2014

Outline

(1) Introduction

(2) Preliminaries.
(3) The Main Result
(4) Further Results

Section Guide

(1) Introduction

(2) Preliminaries.
(3) The Main Result
(4) Further Results

Introduction.

The study of the algorithmic combinatorics within which the present talk can be viewed involves the study of structures that are presented in some algorithmic manner. Loosely speaking we are given some algorithmic presentation of a structure and we ask whether we can derive algorithms for various features of the structure. A classical instance of this is the word problem for groups where we are give a "finite presentation"

$$
G=\left\langle x_{1}, \ldots, x_{n}: y_{1}, \ldots, y_{m}\right\rangle
$$

and one asks if there is an algorithm to decide if a word in x_{1}, \ldots, x_{n} is the identity or not in G. The well known result by Novikov and Boone shows that one can pick G so that the answer is no.

Typical Questions 1.

The effective content of classical theorems. For example, we know that every infinite linear ordering has an infinite ω or $\omega *$ sequence.

- Is this true effectively: does every infinite computable linear ordering have an effective ω or ω^{*} sequence? Answer: no (Tennenbaum, Dennisov).
- An effective version? Rosenstein showed that if \mathscr{L} is a computable linear ordering then \mathscr{L} has a computable sequence of order type $\omega, \omega^{*}, \omega+\omega^{*}$, or $\omega+\zeta \cdot \eta+\omega^{*}$.
- Lerman proved that all these types are necessary.

Typical Questions 2.

The complexity of suborderings/ Effective rigidity properties.

- If τ is the condensation type of a computable linear ordering, what is the arithmetical complexity of τ ?
- Watnick showed (for example) that τ is an order type with a Π_{2}^{0} copy iff $\zeta \cdot \tau$ has a computable copy.
- Conjecture (Kierstead): every computable copy of a computable linear order type τ has a computable self embedding iff τ has a strongly η-like interval.
- Downey, Kastermans, Lempp (2009): true if τ is η-like.
- Moses (2011) extended this result: true if τ has condensation type η.

Section Guide

(1) Introduction

(2) Preliminaries.

(3) The Main Result
4) Further Results

Background Notation

- We assume $\left\{W_{e}\right\}_{e \in \mathbb{N}}$ to be a standard listing of c.e. sets with associated c.e. approximations $\left\{W_{e, s}\right\}_{e, s \in \mathbb{N}} \cdot \emptyset^{\prime}$ denotes the standard halting set for Turing machines in this context, i.e. the set $\left\{e \mid e \in W_{e}\right\}$ and 0^{\prime} denotes the Turing degree of \emptyset^{\prime}.
- We suppose $q_{0}, q_{1}, q_{2}, \ldots$ to be a fixed computable listing of \mathbb{Q}.
- We also assume $\langle x, y\rangle$ to be a standard computable pairing function over \mathbb{N} extended to use over \mathbb{Q} via the above listing.
- $\left\{D_{n}\right\}_{n \in \mathbb{N}}$ denotes the canonical computable listing of all finite sets of nonnegative integers. Note that under this listing, for any $m, n \in \mathbb{N}$, if $D_{m} \subseteq D_{n}$ then $m \leq n$.
- For any function F with domain and range in \mathbb{N} or \mathbb{Q} we use $G(F)$ to denote the set $\{\langle x, y\rangle \mid F(x) \downarrow=y\}$, i.e. the graph of F coded into \mathbb{N} via the pairing function $\langle\cdot, \cdot\rangle$.
- We define F to be Γ, for some predicate of sets Γ, if $G(F) \in \Gamma$.

Arithmetical Complexity Results

- $U_{e, s}$ is shorthand for the (finite) set defined by some fixed universal computable characteristic function $\lambda n U(e, n, s)$.
- There is $\left\{U_{e, s}\right\}_{e, s \in \mathbb{N}}$ such that a set A is Σ_{2}^{0} iff for some e,

$$
A=\left\{n \mid \exists t(\forall s \geq t)\left[n \in U_{e, s}\right]\right\}
$$

- There is $\left\{U_{e, s}\right\}_{e, s \in \mathbb{N}}$ such that a set B is Π_{2}^{0} iff for some e,

$$
B=\left\{n \mid \forall t(\exists s \geq t)\left[n \in U_{e, s}\right]\right\}
$$

- A set C is Δ_{2}^{0} iff there exists computable $\lambda n U(n, s)$ such that, $\lim _{s \rightarrow \infty} U(n, s)$ exists for all n and $\lim _{s \rightarrow \infty} U(n, s)=1$.
- A set D is Δ_{n+1}^{0} iff D is computable in \emptyset^{n} (i.e. $D \leq_{T} \emptyset^{n}$).

Linear Orders: Notation/Results

- We use η to denote the order type of \mathbb{Q} whereas n denotes the finite order type with n elements. For linear orders $\mathscr{L}_{\beta}=\left\langle L_{\beta},<\mathscr{L}_{\beta}\right\rangle$ and $\mathscr{L}_{\gamma}=\left\langle L_{\gamma},\left\langle\mathscr{L}_{\gamma}\right\rangle\right.$ of order type β and γ respectively, $\beta \cdot \gamma$ denotes the order type of $\mathscr{L}_{\beta} \times \mathscr{L}_{\gamma}$ under lexicographical ordering (from the right). For example $2 \cdot \eta$ denotes the order type of a linear ordering formed by taking a copy of the rational numbers and replacing every element by an ordered pair.
- Let $\mathscr{L}=\langle L,\langle\mathscr{L}\rangle$ be a linear ordering. We call $S \subseteq L$ an interval if, for all $a, b \in S$, and any c that lies $<\mathscr{L}$ between a and b, c is also in S. For any $a, b \in L$, we say that a, b are finitely far apart-written $B_{\mathscr{L}}(a, b)$-if the interval S of elements lying between a and b is finite.

Linear Orders: Notation/Results

- Noting that $B_{\mathscr{L}}$ is an equivalence relation we say that the condensation type of \mathscr{L} is the order type of the quotient of \mathscr{L} by $B_{\mathscr{L}}$. Note also that we call $B_{\mathscr{L}}$ the block relation of \mathscr{L}.
- If \mathscr{L} is countably infinite we define \mathscr{L} to be η-like if $\left\{c \mid B_{\mathscr{L}}(c, a)\right\}$ is finite for all $a \in L$ or, equivalently, if \mathscr{L} has order type $\sum\{F(q) \mid q \in \mathbb{Q}\}$ for some function $F: \mathbb{Q} \rightarrow \mathbb{N} \backslash\{0\}$.
- We call any finite interval in \mathscr{L} a block and we call the equivalence classes under $B_{\mathscr{L}}$ maximal blocks. If \mathscr{L} is η-like we call any such associated function F a maximal block function of \mathscr{L}.

Linear Orders: Notation/Results

- We say that \mathscr{L} is strongly η-like if in addition F has finite range (i.e. the maximal block size is bounded).
- For any distinct elements $a, b \in L$ we say that a and b are adjacent-written $N_{\mathscr{L}}(a, b)$-if the interval of elements lying between a and b is empty. Note that $\neg N_{\mathscr{L}}$ is computably enumerable in $<\mathscr{L}$.
- If $\mathscr{L}=\langle L,\langle\mathscr{L}\rangle$ is countably infinite we derive a listing $I_{0}, I_{1}, I_{2}, \ldots$ of L computable in $<\mathscr{L}$. This allows us to assume that $L=\mathbb{N}$. We say that \mathscr{A} is computable if $<\mathscr{L}$ is computable.
- If $\mathscr{L}=\left\langle L,\langle\mathscr{L}\rangle\right.$ is computable then (by the above) $N_{\mathscr{L}}$ is Π_{1}^{0} and so $B_{\mathscr{L}}$ is Σ_{2}^{0}.

New Notation/Results

- A function $F: \mathbb{Q} \rightarrow \mathbb{N} \backslash\{0\}$ is infinum Π_{n}^{0} if, for some Π_{n}^{0} set $U_{j}, F\left(q_{e}\right)=\mu n\left[\left\langle q_{e}, n\right\rangle \in U_{j}\right]$.
- Note that F is infinum Π_{n+1}^{0} iff F is $\mathbf{0}^{n}$ limitwise monotonic (Khisamiev).
- Note also that F is infinum Π_{2}^{0} iff
$F\left(q_{e}\right)=\lim \inf _{s \rightarrow \infty} \widehat{F}\left(q_{e}, s\right)$ for some computable function \widehat{F}.

New Notation/Results

Lemma (H 2014)
If $F: \mathbb{Q} \rightarrow \mathbb{N} \backslash\{0\}$ is infinum Π_{2}^{0}, then $\tau=\sum\{F(q) \mid q \in \mathbb{Q}\}$ has a computable presentation.

Proof.

Given $\Pi_{2}^{0} U_{j}$, construct $\mathscr{L}=\langle L,\langle\mathscr{L}\rangle$ with $L=\mathbb{N}$ by stages with finite $\mathscr{L}_{s}=\left\langle L_{s},\langle\mathscr{L}\rangle\right.$ defined at the end of each stage. Using $q_{0}, q_{1}, q_{2}, \ldots$ define the approximation $I(e, s)$ to block $I(e)$ for all $e \leq s:|/(e, s)|=\widehat{F}\left(q_{e}, s\right)={ }_{\operatorname{def}} \mu n\left[\left\langle q_{e}, n\right\rangle \in U_{j, s} \cup\{s\}\right]$ so that $F\left(q_{e}\right)=\mu n\left[\left\langle q_{e}, n\right\rangle \in U_{i}\right]=|I(e)|$.

Section Guide

(1) Introduction

(2) Preliminaries.
(3) The Main Result
(4) Further Results

Background Results

Theorem (Fellner 1976)

If \mathscr{B} is a computable η-like linear ordering then there is a Δ_{3}^{0} function F such that \mathscr{B} has order type $\tau=\sum\{F(q) \mid q \in \mathbb{Q}\}$.

Lemma (Jockush 1968)

There exists a computable listing $\left\{U_{e}\right\}_{e \in \mathbb{N}}$ of the Π_{2}^{0} sets with associated computable approximation $\left\{U_{e, s}\right\}_{e, s \in \mathbb{N}}$ satisfying, for all $e \geq 0, U_{e}=\left\{x \mid \forall t(\exists s \geq t)\left[x \in U_{e, s}\right]\right\}$ and such that, for any finite sets E_{0}, \ldots, E_{e} with $E_{i} \subseteq U_{i}$ for all $0 \leq i \leq e$, there exist infinitely many stages such that $E_{i} \subseteq U_{i, s}$ for all $0 \leq i \leq e$.

Main Theorem

Theorem (H 2014)

There exists a computable linear ordering \mathscr{L} of order type $\kappa=\sum\{F(q) \mid q \in \mathbb{Q}\}$ such that $F: \mathbb{Q} \rightarrow \mathbb{N} \backslash\{0\}$, and such that, for any Π_{2}^{0} function $G: \mathbb{Q} \rightarrow \mathbb{N} \backslash\{0\}$ and linear ordering $\mathscr{B} \cong \mathscr{L}, \mathscr{B}$ does not have order type $\tau=\sum\{G(q) \mid q \in \mathbb{Q}\}$.

The Requirements.

The construction aims to construct \mathscr{L} of order type $\sum\{F(q) \mid q \in \mathbb{Q}\}$ such that $F: \mathbb{Q} \rightarrow \mathbb{N} \backslash\{0\}$ and such that F satisfies, for all $e \in \mathbb{N}$, the following requirements:
R_{e} : for all $k, j \leq e$, either
(1) $\left\langle q_{k}, F\left(q_{e}\right)\right\rangle \notin U_{j}$, or
(2) there exist $m \neq I$ such that $\left\langle q_{k}, m\right\rangle \in U_{j}$ and $\left\langle q_{k}, I\right\rangle \in U_{j}$.

Elements of the Construction.

Our Aim. Construct a computable linear ordering $\mathscr{L}=\langle L,<\mathscr{L}\rangle$ with domain $L=\mathbb{N}$ arranged in a set of maximal blocks $\{I(n) \mid n \in \mathbb{N}\}$ such that, for all $n \geq 0, F\left(q_{n}\right)=|I(n)|$ and also such that $I(n)$ is ordered relative to $\{I(k) \mid k \neq n\}$ as q_{n} is ordered relative to $\left\{q_{k} \mid k \neq n\right\}$; i.e. under our present terminology, such that the listing $I(0), I(1), I(2), \ldots$ is an assignment of F to \mathscr{L}.

Requirements? Satisfaction of $\left\{R_{e}\right\}_{e \in \mathbb{N}}$ ensures that, for any $j \in \mathbb{N}$, if U_{j} is the graph of a maximal block function G_{j} and \mathscr{B} is a linear ordering of order type $\gamma=\sum\left\{G_{j}(q) \mid q \in \mathbb{Q}\right\}$, then $\mathscr{B} \not \equiv \mathscr{L}$.

The Diagonalisation Witness and Domain.

Diagonalisation Witness. For $s \geq e$, witness $m(e, s)$ for R_{e} is the construction's guess as to a number such that $\left\langle q_{k}, m(e, s)\right\rangle \notin U_{j}$, for all $0 \leq k, j \leq e$ such that U_{j} is the graph of a function $\mathbb{Q} \rightarrow \mathbb{N} \backslash\{0\}$. For all stages $s>e$, $m(e, s)=|I(e, s)|=F_{s}(e)$, where F_{s} is the s stage approximation to F.

The set of diagonalisation pairs. For index e define

$$
P^{e}=\{(i, j) \mid 0 \leq i, j \leq e\}
$$

Thus $\left|P^{e}\right|=(1+e)^{2}$. Letting $x_{0}^{e}, \ldots, x_{(1+e)^{2}-1}^{e}$ be the computable ordering of P^{e} induced by the standard pairing function $\langle\cdot, \cdot\rangle$ we have the computable listing $D_{0}^{e}, \ldots, D_{2^{(1+e)^{2}-1}}^{e}$ of all subsets of P^{e}. (Note: $D_{i}^{e} \subseteq D_{j}^{e} \Rightarrow i \leq j$.)

The Diagonalisation Witness and Domain.

The diagonalisation domain. For R_{e} define this to be:

$$
Z_{e}=X_{0}^{e} \cup \ldots \cup X_{2^{(1+e)^{2}-1}}^{e}
$$

where, for each $0 \leq i \leq 2^{(1+e)^{2}}-1, X_{i}^{e}$ is an interval of numbers associated with D_{i}^{e} such that (i) $\left|X_{i}^{e}\right| \geq\left|D_{i}^{e}\right|+1$ and (ii) for $i \neq 0, \min X_{i}^{e}>\max X_{i-1}^{e}$. To do this, for simplicity we define X_{i}^{e} such that $\left|X_{i}^{e}\right|=(1+e)^{2}+1$ for every $0 \leq i \leq 2^{(1+e)^{2}}-1$ by defining:

$$
X_{i}^{e}=\left\{i(1+e)^{2}+(i+1), \ldots,(i+1)(1+e)^{2}+(i+1)\right\}
$$

Accordingly Z_{e} is the interval $\left\{1, \ldots,\left|Z_{e}\right|\right\}$ partitioned by the X_{i}^{e} and having cardinality $\left|Z_{e}\right|=2^{(1+e)^{2}}\left((1+e)^{2}+1\right)$.

The Diagonalisation.

Approximating $F\left(q_{e}\right)=m(e)$. The point here is that, at stage s we choose an index $i(e, s)$ such that:

$$
(k, j) \in D_{i(e, s)}^{e} \Leftrightarrow\left|\left\{\left\langle q_{k}, r\right\rangle \mid r \in Z_{e}\right\} \cap U_{j, s}\right| \leq 1
$$

for all $0 \leq k, j \leq e$. Since $\left|X_{i(e, s)}^{e}\right| \geq\left|D_{i(e, s)}\right|+1$ we know that

$$
X_{i(e, s)} \backslash\left\{r \mid r \in Z_{e} \&\left(\exists(k, j) \in D_{i(e, s)}\right)\left[\left\langle q_{k}, r\right\rangle \in U_{j, s}\right]\right\} \neq \emptyset
$$

so that we can define the s stage witness $m(e, s)$ to be a number in this set.

Verification 1.

Definition of $i(e)$. Let $i(e)$ be the index satisfying

$$
(k, j) \in D_{i(e)}^{e} \Leftrightarrow\left|\left\{\left\langle q_{k}, r\right\rangle \mid r \in Z_{e}\right\} \cap U_{j}\right| \leq 1
$$

for all $0 \leq k, j \leq e$.
Result 1. Let $t_{e}>s_{e}$ be a stage such that

$$
\left|\left\{\left\langle q_{k}, r\right\rangle \mid r \in Z_{e}\right\} \cap U_{j, s}\right| \leq 1
$$

for all $(k, j) \in D_{i(e)}^{e}$ and $s \geq t_{e}$. Then, by definition, at any such stage $s, D_{i(e)}^{e} \subseteq D_{i(e, s)}^{e}$ and so $i(e) \leq i(e, s)$.

Verification 2.

Result 2. For each $0 \leq j \leq e$ define

$$
E_{j}=\left\{\left\langle q_{k}, r\right\rangle \mid r \in Z_{e} \& k \leq e \&(k, j) \notin D_{i(e)}^{e}\right\} \cap U_{j}
$$

By the earlier Lemma, there are infinitely many stages s such that $E_{j} \subseteq U_{j, s}$ for all $0 \leq j \leq e$. Moreover, at each such stage $s \geq t_{e}$, by definition of the construction, $i(e)=i(e, s)$.
Result 3. Hence we can define $F\left(q_{e}\right)=m(e)$ where $m(e) \in X_{i(e)}$, so that $m(e) \leq m(e, s)$ for all $s \geq t_{e}$ and $m(e)=m(e, s)$ for ∞ many stages s. Note that $F\left(q_{e}\right)$ satisfies R_{e}.
Remark. $F\left(q_{e}\right)=\mu m\left[\left\langle q_{e}, m\right\rangle \in U\right]$ where

$$
U=\left\{\left\langle q_{e}, m\right\rangle \mid \forall t(\exists s \geq t)[m(e, s)=m]\right\} .
$$

Verification 3.

Note. Suppose that \mathscr{B} is a linear ordering and $\iota: \mathscr{B} \cong \mathscr{L}$ is an isomorphism. Suppose also that $\widehat{F}: \mathbb{Q} \rightarrow \mathbb{N} \backslash\{0\}$ is a maximal block function of \mathscr{B} and that $\widehat{l}(0), \widehat{l}(1), \widehat{l}(2), \ldots$ is an assignment of \widehat{F} to \mathscr{B}. Now note that we have a listing of labels of \mathscr{L},

$$
m_{0}, m_{1}, m_{2}, \ldots
$$

such that

$$
\iota: \widehat{l}(j) \cong I\left(m_{j}\right)
$$

(i.e. $I\left(m_{j}\right)$ is the isomorphic image of $\widehat{I}(j)$ under ι) for all $j \geq 0$. Moreover there must be infinitely many labels j of \mathscr{B} such that $m_{j} \geq j$. We therefore conclude that there are infinitely many pairs of labels (k, e) with $k \leq e$ such that $\iota: \widehat{l}(k) \cong I(e)$.

Verification 4.

Result 4. Choose any $\mathscr{B}, \iota, \widehat{F}$ and assignment $\widehat{l}(0), \widehat{l}(1), \widehat{l}(2), \ldots$ as in the Note. Consider any index $j \geq 0$ and suppose that U_{j} is the graph of a function G_{j} with domain \mathbb{Q}. As above, choose $k \geq j$ such that $\iota: \widehat{I}(k) \cong I(e)$ for some $e \geq k$. Now, by definition of the construction, $(k, j) \in D_{i(e)}$. However this implies that

$$
G_{j}\left(q_{k}\right) \neq m(e)=F\left(q_{e}\right)=|I(e)|=\widehat{I}(k) \mid
$$

Note that the choice of \widehat{F}, and of its assignment to \mathscr{B}, as also of the isomorphism $\iota: \mathscr{B} \cong \mathscr{L}$, was in each case arbitrary. The same holds for the choice of the index $j \geq 0$, and of the linear ordering $\mathscr{B} \cong \mathscr{L}$. We can thus conclude that, for any Π_{2}^{0} function $G: \mathbb{Q} \rightarrow \mathbb{N} \backslash\{0\}$ and any $\mathscr{B} \cong \mathscr{L}, \mathscr{B}$ does not have order type $\tau=\sum\{G(q) \mid q \in \mathbb{Q}\}$.

Section Guide

(1) Introduction

(2) Preliminaries.
(3) The Main Result
(4) Further Results

Further Results.

Lemma (H 2014)

If computable $\mathscr{L}=\langle L,\langle\mathscr{L}\rangle$ is strongly η-like or if \mathscr{L} is η-like but contains no strongly η-like interval then \mathscr{L} has order type $\sum\{F(q) \mid q \in \mathbb{Q}\}$ for some infinum Π_{2}^{0} function F.

Further Results.

Conjecture (Kierstead 1987). Every computable presentation of a computable linear order type τ has a strongly nontrivial Π_{1}^{0} automorphism if and only if τ contains an interval of order type η.

Lemma (Kierstead 1987)

There exists a computable linear order \mathscr{B} of order type $2 \cdot \eta$ that is Π_{1}^{0}-rigid.

Note. It is easy to construct a computable nontrivial automorphism of any computable \mathscr{L} if \mathscr{L} has an interval of order type η. Similarly, if \mathscr{L} has an interval of order type $n \cdot \eta$ for some $n>1$ then \mathscr{L} has a Δ_{2}^{0} nontrivial automorphism.

Further Results.

Theorem (H, Lee and Cooper 2014)

Suppose that \mathscr{B} is an η-like computable linear ordering with no interval of order type η, such that \mathscr{B} has order type $\tau=\sum\{F(q) \mid q \in \mathbb{Q}\}$ for some infinum Π_{2}^{0} function F. Then for any graph subuniform Δ_{2}^{0} class \mathcal{F} there is a computable $\mathscr{L} \cong \mathscr{B}$ which is \mathcal{F}-rigid.

Note. Examples of graph subuniform Δ_{2}^{0} classes.
(i) The class of Π_{1}^{0} functions. (ii) The class of α-c.e. functions, for any ordinal $\alpha<\omega^{2}$. (iii) The class of functions (whose graphs are) a-c.e. for some $a \in \mathcal{A}$ where \mathcal{A} is a Σ_{2}^{0} subset of the set of Kleene notations \mathcal{O} for the computable ordinals. (iv) The class of functions computable in a set B if B is low.

Bibliography.

S. Fellner. Recursiveness and Finite Axiomatizability of Linear Orderings. PhD thesis, Rutgers University, New Brunswick, New Jersey, 1976.
C.M. Harris. On Maximal Block Functions of Computable η-like Linear Orderings. To appear in: A. Beckmann, E. Csuhaj-Varjú, and K. Meer, editors, CiE 2014, LNCS 8493, pages 214-223, 2014.
C.M. Harris. The Complexity of Maximal Block Functions of Computable η-like Linear Orderings. 2014. In preparation.
C.M. Harris, K.I. Lee, and S.B. Cooper. Automorphisms of computable linear orders and the Ershov hierarchy. 2014. In preparation.

Jockusch, C.G. Semirecursive Sets and Positive Reducibility. Trans. Amer. Math. Soc, 131:420-436, 1968.
H.A. Kierstead. On Π_{1}-automorphisms of recursive linear orders. Journal of Symbolic Logic, 52:681-688, 1987.

Background References.

Good sources for Computable Linear Orderings are Downey's survey paper and Rosenstein's monograph as detailed below.
R. Downey. Computability theory and linear orderings. In Y.L. Ershov, S.S. Goncharov, A. Nerode, and J.B. Remmel, editors, Handbook of Recursive Mathematics Volume 2: Recursive Algebra, Analysis and Combinatorics, Studies in Logic and the Foundations of Mathematics, pages 823-976. North Holland, 1998.
J.G. Rosenstein. Linear Orderings. Volume 98 of Pure and Applied Mathematics, Academic Press, 1982.

THE END

