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1 Introduction.

Given their relative simplicity, the study of η-like linear orderings has attracted
attention as a preliminary test case for obtaining general results for computable
linear orderings. An example of this is Kierstead’s [Kie87] construction of a com-
putable linear ordering of order type 2 · η with no nontrivial Π0

1 automorphism,
and subsequent conjecture that every computable copy of a computable linear
ordering L has a strongly nontrivial1 Π0

1 automorphism if and only if the order
type τ of L contains an interval of order type η. This conjecture is supported by
the Theorem in [DM89] that every computable discrete linear ordering L has a
computable copy with no strongly nontrivial Π0

1 self embedding. In the context
of η-like linear orderings, Downey and Moses deduced that Kierstead’s result for
the order type 2 · η can be generalised to the case of any η-like order type2 τ
provided that τ has a Π0

2 maximal block function and no interval of order type

1 Kierstead defines an automorphism f of a linear ordering L to be fairly trivial if
it is nontrivial but maps every element x to an element y with [x, y] finite and f to
be strongly nontrivial if it is neither trivial nor fairly nontrivial. Note that if L is
η-like then any nontrivial automorphism of L is strongly nontrivial.

2 The powerful choice set method—a choice set of a linear ordering is a set containing
precisely one element from each maximal block—used by Moses and Downey in
the context of embeddings of discrete linear orderings [DM89], would need to be
modified in order to be applicable to any such order type τ . Indeed suppose that
L is a computable η-like linear ordering with a strongly η-like interval. Choose
elements a <L b in one such interval such that a is the rightmost and b the leftmost
element of its respective maximal block, and such that, for some n, the interval
(a, b) contains infinitely many maximal blocks of size n and no maximal block of size
m > n. Then the set of leftmost elements (and, in fact, for any 1 ≤ i ≤ n, the set
of i to leftmost elements) of the maximal blocks of size n in the interval (a, b) forms
an infinite Σ0

2 set. Hence any construction that diagonalises against Σ0
2 subsets of a
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η. This last result is the starting point of the present paper as it prompts the
question of whether it can be applied to the whole class of computable η-like lin-
ear orderings and hence, in particular, of whether every computable η-like linear
ordering L has a copy B with a Π0

2 maximal block function. We answer this
question in the negative in Theorem 2 by constructing a counterexample B via
a diagonalisation argument applied using the basic properties of isomorphisms
of linear orderings in this context. We note that this solves a question mentioned
by several authors including Fellner [Fel76], Lerman and Rosenstein [LR82] and
Downey and Moses [DM89].

2 Preliminaries.

We assume {We}e∈N to be a standard listing of c.e. sets with associated c.e.
approximation {We,s}e,s∈N. ∅′ denotes the standard halting set for Turing ma-
chines in this context, i.e. the set { e | e ∈ We } and 0′ denotes the Turing
degree of ∅′. We suppose q0, q1, q2, . . . to be a fixed computable listing of Q. We
also assume 〈x, y〉 to be a standard computable pairing function over N extended
to use over Q via the above listing. {Dn}n∈N denotes the canonical computable
listing of all finite sets of nonnegative integers. Note that under this listing, for
any m,n ∈ N, if Dm ⊆ Dn then m ≤ n.

For any set X, we use |X| to denote the cardinality of X. For any function3

F with domain and range in N or Q we use G(F ) to denote the set { 〈x, y〉 |
F (x) ↓ = y }, i.e. the graph of F coded into N via the pairing function 〈·, ·〉.
(Note that in this context we identify a pair (x, y) with its code 〈x, y〉 so that,
for example, the shorthand G(F ) ⊆ Q× N makes sense.) We define F to be Γ ,
for some predicate of sets Γ , if G(F ) ∈ Γ .

Note 1. Any4 Σ0
2 function F with domain Q and codomain N is ∆0

2. Indeed
using a 0′ oracle we can compute F (q), for any q ∈ Q, as the number n found
by enumerating G(F ) until we find 〈x, n〉 with x = q.

Let L = 〈L,<L 〉 be a linear ordering. We call S ⊆ L an interval if, for all
a, b ∈ S, and any c that lies <L between a and b, c is also in S. Notice that S
does not necessarily have endpoints. Note that we also use the term interval in
direct reference to the order type of L with obvious meaning. For any a, b ∈ L,
we say that a, b are finitely far apart—written a ∼∗ b—if the interval S of
elements lying between a and b is finite. (By definition S = ∅ if a = b.) Note

choice set containing, for example, the leftmost element in each maximal block, will
not be applicable if L contains a strongly η-like interval. (Note that a proof based
on similar techniques to those used in [Kie87] can be applied in this context—see
[HLC14].)

3 We use the convention here and in further work that maximal block functions are
usually denoted using upper case letters whereas automorphisms of linear orderings
are usually denoted using lower case letters.

4 This is a particular case of the same (standard) observation generalised from n = 2
to any n ≥ 1, when the domain (and codomain) of F are computable.
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that ∼∗ is an equivalence relation. If L is countably infinite we define L to be
η-like if { c | c ∼∗ a } is finite for all a ∈ L or, equivalently, if L has order type
τ =

∑
{F (q) | q ∈ Q } for some function F : Q → N \ {0}. We call any finite

interval in L a block and we call the equivalence classes under ∼∗ maximal
blocks. If L is η-like we call such a function F a maximal block function of
L . We say that L is strongly η-like if in addition F has finite range (i.e. the
maximal block size is bounded). For any maximal block I of size p ≥ 1 (written
|I| = p) we use terminology of the form I = k1 <L · · · <L kp to denote I
and we call k1 (kp) the leftmost (rightmost) element of I. If A = 〈A,<A 〉 is
a countably infinite linear ordering we assume that A = N and derive a listing
a0, a1, a2, . . . of A computable in <A . We say that A is computable if <A is
computable.

We assume the reader to be conversant with the Arithmetical Hiearchy and
Turing reducibility (≤T). We refer the reader to [Odi89] for further background
and notation in computability theory and to [Dow98] for a review of computabil-
ity thoeretic results in the context of linear orders.

3 The Complexity of Maximal Block Functions.

Fellner determined a bound for the arithmetical complexity of maximal block
functions of a computable η-like linear ordering.

Theorem 1 ([Fel76]). If B is a computable η-like linear ordering then there
is a ∆0

3 function F such that B has order type τ =
∑
{F (q) | q ∈ Q }.

Our present concern is with the extent to which the bound in Theorem 1 can
be tightened. However before proceeding we need to take into account that care
is needed when dealing with the notion of maximal block functions for η-like
linear orderings.

Note 2. Let A be an η-like linear ordering. Then A may have many different
maximal block functions. For example, if A contains maximal blocks of size
n+ 1 for all n ≥ 0 then, for each n ≥ 0 we can define a distinct maximal block
function Fn for A such that Fn(q0) = n+ 1.

Note 3. If A is an η-like linear ordering and F is a maximal block function of A
we say that a listing I(0), I(1), I(2), . . . of maximal blocks of A is an assignment
of F to A if F (qn) = |I(n)| for all n ≥ 0. Note that there may be many different
such assignments of F to A . For example5, suppose that A is made up of sets
of maximal blocks of size 2 and 3 and that each of these sets is dense (in the
standard sense) in A . Let I(0), I(1), I(2), . . . be some listing of the maximal
blocks of A and let I(i0), I(i1), I(i2), . . . be a sublisting of maximal blocks of
size 2. Then we can define a block function F of A with F (q0) = 2 such that
for every k ≥ 0 there is a distinct assignment Ik(0), Ik(1), Ik(2), . . . of F to A
such that Ik(0) = I(ik).

5 An even easier but less interesting example of this phenomemon is when A has order
type n · η for some n ≥ 1.
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Our next Lemma restates a well known property of the class of Π0
2 sets,

originally proved by Jockusch [Joc68], in a form directly applicable to our main
Theorem.

Lemma 1. There exists a computable listing {Ue}e∈N of the Π0
2 sets with asso-

ciated computable approximation {Ue,s}e,s∈N satisfying, for all e ≥ 0, Ue = {x |
∀t(∃s ≥ t)[x ∈ Ue,s ] } and such that, for any finite sets E0, . . . , Ee with Ei ⊆ Ui

for all 0 ≤ i ≤ e, there exist infinitely many stages s such that Ei ⊆ Ui,s for all
0 ≤ i ≤ e.

We now proceed to our main Theorem.

Theorem 2. There exists a computable linear ordering L of order type κ =∑
{F (q) | q ∈ Q } such that F : Q → N \ {0}, and such that, for any Π0

2

function G : Q → N \ {0} and linear ordering B ∼= L , B does not have order
type τ =

∑
{G(q) | q ∈ Q }.

Note. By Note 1 we can replace “Π0
2” by “Σ0

2 ∪ Π0
2” in the statement of Theo-

rem 2. Notice that, taken in conjunction with Theorem 1, this implies that any
computable B ∼= L has a properly ∆0

3 maximal block function. In particular we
will see that this is the case for the function F constructed below.

Proof. Assume {Ue}e∈N to be a standard listing of the class of Π0
2 sets with

associated computable Π0
2 approximation {Ue,s}e,s∈N as prescribed by Lemma 1.

The construction aims to construct L of order type
∑
{F (q) | q ∈ Q } such

that F : Q → N \ {0} and such that F satisfies, for all e ∈ N, the following
requirements:

Re : (∀k, j ≤ e)[ 〈qk, F (e)〉 /∈ Uj ∨ ∃m∃l[m 6= l & 〈qk,m〉 ∈ Uj & 〈qk, l〉 ∈ Uj ] ].

We shall see in the course of the verification below that satisfaction of {Re}e∈N
ensures that, for any j ∈ N, if Uj is the graph of a maximal block function Gj

and B is a linear ordering of order type γ =
∑
{Gj(q) | q ∈ Q }, then B � L .

For clarity, we use <Q and <N when we need to differentiate between the
respective standard orderings of Q and N. Our aim is to construct a computable
linear ordering L = 〈L,<L 〉 with domain L = N arranged in a set of maximal
blocks { I(n) | n ∈ N } such that, for all n ≥ 0, F (qn) = |I(n)| and also
such that I(n) is ordered relative to { I(k) | k 6= n } as qn is ordered relative
to { qk | k 6= n }; i.e. under our present terminology, such that the listing
I(0), I(1), I(2), . . . is an assignment of F to L .

We will proceed by stages s ≥ 0 defining a finite linear ordering Ls =
〈Ls, <

s
L 〉 at stage s such that, for some ns, rs ≥ 0, Ls = N�ns and such that

Ls is arranged as a finite set of blocks { I(n, s) | n < rs } where, for all n <
rs, I(n, s) is the s stage approximation to maximal block I(n). We say that
n is the label of I(n, s) and use this terminology quite generally in order to
distinguish this use of N from our use of N as the domain of the linear ordering.
The ordering <s

L is defined by the internal ordering applied within each block
and the ordering between blocks dictated by <Q over { qn | n < rs }. Note that,
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in the construction, at any stage s ≥ 0, if I(n, s) 6= ∅, then for any elements
k,m ∈ I(n, s), k <s

L m ⇔ k <N m. In other words the internal ordering of
blocks always coincides with the natural ordering of N. During the construction,
for any stage s, and k,m ∈ Ls, if k <s

L m then k <t
L m for all t ≥ s. Hence we

will in general use <L as shorthand for <s
L .

We choose some d > 0 as a default maximal block size for the construction.

Notation. During the construction we use the term new to refer to any finite set
of numbers S which has not yet been enumerated into L at the present point in
the construction and which is the minimal such set of cardinality |S|.
Block Rebuilding. At stage s+ 1 we may want to rebuild block I(n, s) for some
n < rs. This means that there are distinct integers6 n̂ ≥ 0 and m̂ > 0 such that
|I(n, s)| = n̂ whereas we need |I(n, s + 1)| = m̂. We then proceed as follows
according to whichever of the two cases below applies.

(a) n̂ > m̂. In this case we search for the least labels b1, . . . , bn̂−m̂ ≥ rs such
that qn <Q qb1 <Q · · · <Q qbn̂−m̂

<Q qa where I(a, s) is the successor block
to I(n, s) in Ls (so that qn <Q qa) or qa is simply any rational to the right
of qn if no such successor block exists. We define S = { bj | 1 ≤ j ≤ n̂− m̂ }
and T = { d | rs ≤ d ≤ maxS }. Suppose that k1 <L · · · <L kn̂−m̂ are the
n̂− m̂ rightmost elements in I(n, s). We remove {k1, . . . , kn̂−m̂} from I(n, s)
to obtain |I(n, s + 1)| = m̂ and proceed as follows. We firstly construct
I(b1, s+ 1) by constructing it as the singleton block consisting of k1 if d = 1
and otherwise we define it as k1 <L p̂ <L · · · <L p̂+ d− 2 (i.e. as a block
of d elements) with {p̂, . . . , p̂+ d− 2} a set of d− 1 new numbers. We then
proceed for each kj such that 1 < j ≤ n̂− m̂ by constructing I(bj , s+ 1) in
a similar fashion. Finally, for all b ∈ T \ S we construct I(b, s + 1) using d
new numbers. (Note that each I(b, s+ 1) is inserted into Ls+1 according to
qb’s position under <Q relative to { qn | n < rs } ∪ { qm | m ∈ T } \ {qb}.)

(b) n̂ < m̂. In this case, supposing that I(n, s) = k1 <L · · · <L kn̂ we choose
a new set of m̂− n̂ numbers {p̂, . . . , p̂+ r} where r = m̂− n̂− 1 and define
I(n, s+ 1) = k1 <L · · · <L kn̂ <L p̂ <L · · · <L p̂+ r.

Note that, as this is the only rebuilding process applied during the construction
we will be able to see, by inspection of the construction, that the following two
conditions hold.

(i) For any n ≥ 0, m̂ > 0 and stages 0 ≤ s ≤ t, such that |I(n, r)| ≥ m̂ for
all s ≤ r ≤ t, the block consisting of the m̂ leftmost (i.e. least) elements in
I(n, t) is the same as that in I(n, s).

(ii) For any n, b, k ≥ 0 and stages t > s ≥ 0, if k is removed from I(n, s) at
stage s+ 1 due to rebuilding and inserted into I(b, s+ 1) as described above,
then k ∈ I(b, t). Note that this follows from (i) as k is the least number in
I(b, s+ 1). In other words any number can move from one block to another
at most once.

6 In fact n̂ > 0 for any such n ≤ s with the possible exception of n = s at early stages
of the construction.
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The Diagonalisation Witness and Domain for Re. For s ≥ e, witness m(e, s) for
Re is the construction’s guess as to a number such that 〈qk,m(e, s)〉 /∈ Uj , for
all 0 ≤ k, j ≤ e such that Uj is the graph of a function Q → N \ {0}. For all
stages s > e, m(e, s) = |I(e, s)| = Fs(e), where Fs is the s stage approximation
to F . The set of diagonalisation pairs for index e is defined to be

P e = { (i, j) | 0 ≤ i, j ≤ e } .

Thus |P e| = (1+e)2. Letting xe0, . . . , x
e
(1+e)2−1 be the computable ordering of P e

induced by the standard pairing function 〈·, ·〉 we have the computable listing

De
0, . . . , D

e
2(1+e)2−1

of all subsets of P e defined using the canonical listing of finite sets {Di}i∈N
specified above. (Note that De

0 = ∅ under this listing.) It is important to reiterate
here that this means (by definition of the latter listing) that, for all i, j ≥ 0,

De
i ⊆ De

j ⇒ i ≤ j .

We now define the diagonalisation domain for Re to be:

Ze = Xe
0 ∪ . . . ∪ Xe

2(1+e)2−1

where, for each 0 ≤ i ≤ 2(1+e)2 − 1, Xe
i is an interval of numbers associated

with De
i such that (i) |Xe

i | ≥ |De
i |+ 1 (for reasons explained below) and (ii) for

i 6= 0, minXe
i > maxXe

i−1. To do this, for simplicity we define Xe
i such that

|Xe
i | = (1 + e)2 + 1 for every 0 ≤ i ≤ 2(1+e)2 − 1 by defining:

Xe
i = {i(1 + e)2 + (i+ 1), . . . , (i+ 1)(1 + e)2 + (i+ 1)} .

Accordingly Ze is the interval {1, . . . , |Ze|} partitioned by the Xe
i and having

cardinality |Ze| = 2(1+e)2((1 + e)2 + 1).

The point here is that, at stage s we choose an index i(e, s) for e in such a way
that, (k, j) ∈ Di(e,s) if and only if there exists at most one number n ∈ Ze such
that 〈qk, n〉 ∈ Uj,s. Since |Xe

i(e,s)| ≥ |Di(e,s)|+ 1 we know that

Xi(e,s) \ { r | r ∈ Ze & (∃(k, j) ∈ Di(e,s))[ 〈qk, r〉 ∈ Uj,s ] } 6= ∅

so that we can define the s stage witness m(e, s) to be a number in this set.

The Construction.

Stage s = 0.

Set L0 = 〈L0, <L 〉 with L0 =<L = ∅. Define I(n, 0) = ∅, m(n, 0) = 0 and let
i(n, 0) be undefined for all n ≥ 0. Set n0 = r0 = 0.

Stage s+ 1.

We suppose that ns and rs are such that Ls = N�ns and {n | I(n, s) 6= ∅ } =
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N�rs. There are now s+ 1 substages 0 ≤ e ≤ s as follows.

Substage e.

Process requirement Re as follows. Define i(e, s+ 1) ∈ N�2(1+e)2 to be the index
l satisfying

(k, j) ∈ De
l ⇔ |{ 〈qk, r〉 | r ∈ Ze } ∩ Uj,s+1| ≤ 1

for all 0 ≤ k, j ≤ e. Let i = i(e, s+1). If i = 0—i.e. if De
i = ∅—define Me(s+1) =

Xe
i . Otherwise define Me(s+ 1) as follows.

Notation. The individual out-age of m ∈ Xe
i relative to any pair (k, j) ∈ De

i at
stage s + 1—denoted be(m, (k, j), s + 1)—is defined to be 0 if 〈qk,m〉 ∈ Uj,s+1

and otherwise is defined to be the greatest 0 < r ≤ s+1 such that 〈qk,m〉 /∈ Uj,t

for all (s + 1) − r < t ≤ s + 1. The out-age of m ∈ Xe
i relative to De

i at stage
s+ 1 is defined to be

ae(m, s+ 1) = min { be(m, (k, j), s+ 1) | (k, j) ∈ De
i } .

Define

Me(s+ 1) = {m | m ∈ Xe
i & (∀n ∈ Xe

i )[ ae(m, s+ 1) ≥ ae(n, s+ 1) ] } , (1)

i.e. Me(s + 1) contains all m ∈ Xe
i of maximal out-age relative to De

i . (Note
that, by construction, ae(m, s+ 1) = ae(n, s+ 1) > 0 for any n,m ∈Me(s+ 1).
Notice also that Me(s+ 1) contains precisely those numbers m ∈ Xe

i for which
it appears most likely that 〈qk,m〉 /∈ Uj for all (k, j) ∈ De

i .)
Define the s+ 1 stage witness m(e, s+ 1) = minMe(s+ 1). If m(e, s+ 1) =

m(e, s) do nothing (so that I(e, s + 1) = I(e, s)). Otherwise rebuild I(e, s + 1)
from I(e, s) as described under the Block Building above with7 n̂ = |I(e, s)| and
m̂ = m(e, s+ 1)—so that |I(e, s+ 1)| = m(e, s+ 1).

Ending Substage e.

If e < s proceed to substage e+ 1. If e = s define Ls+1 = 〈Ls+1, <L 〉 as follows.
Let I(n, s+1) = I(n, s) for any labels s < n < rs, i.e. for n such that I(n, s) was
a block in Ls but such that the block I(n, s) was not rebuilt during one of the
substages 0 ≤ e ≤ s during this stage. Set rs+1 = max {n | I(n, s) 6= ∅ } + 1,
and ns+1 = max {m | (∃n < rs+1)[m ∈ I(n, s+1) ] }+1. Define Ls+1 = N�ns+1

and define <L as dictated by the arrangement of the blocks { I(n, s+ 1) | n <
rs+1 } in Ls+1 (and <L ’s coincidence with the natural ordering inside each
block). Proceed to stage s+ 2 in this case.

Verification.

Define L = 〈L,<L 〉 with L =
⋃

s≥0 Ls. Let

U = { 〈e,m〉 | ∀t(∃s ≥ t)[m(e, s) = m ] }
7 For e < s, |I(e, s)| = m(e, s). However for e = s we have m(e, s) = 0 whereas it may

be that |I(e, s)| 6= 0 due to previous rebuilding activity for the sake of some Ri with
i < e.
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and notice that U is a Π0
2 set (as m(e, s) is computable). Define

F (qe) = µm[ 〈e,m〉 ∈ U ] . (2)

Note that F (qe) is defined for all e as m(e, s) is defined as an element of the finite
set Ze for all s > e. Notice also that F : Q→ N \ {0} (and that the construction
of F is ∆0

3 as witnessed by (2)).
We see by inspection that L = N and that L has order type

∑
{F (q) |

q ∈ Q }. Indeed by construction n ∈ Ln+1 ⊆ L. Moreover n can be moved from
one block I(b, s) into another block I(a, s+ 1) at stage s+ 1 only via the Block
Rebuilding process. However in this case n ∈ I(a, t) for all t ≥ s+ 1 as explained
in remark (ii) on page 5. Thus n changes blocks at most once. Now consider e ≥ 0.
Let se be a stage such that m(e, se) = F (qe) and such that m(e, s) ≥ m(e, se)
for all s ≥ se. Then |I(e, se)| = F (qe) and { s | |I(e, s)| = F (qe) } is infinite.
Moreover, as stated in observation (i) on page 5, the leftmost block of F (qe) is
preserved in I(e, t) for all t ≥ se. I.e. I(e) is well defined as a maximal block
with cardinality F (qe).

For e ≥ 0 as above, define i(e) to be the index satisfying

(k, j) ∈ De
i(e) ⇔ |{ 〈qk, r〉 | r ∈ Ze } ∩ Uj | ≤ 1

for all 0 ≤ k, j ≤ e. Let te > se be a stage such that

|{ 〈qk, r〉 | r ∈ Ze } ∩ Uj,s| ≤ 1

for all (k, j) ∈ De
i and s ≥ te. Then, by definition, at any such stage s, De

i(e) ⊆
De

i(e,s) and so i(e) ≤ i(e, s). For each 0 ≤ j ≤ e define8

Ej = { 〈qk, r〉 | r ∈ Ze & k ≤ e & (k, j) /∈ De
i(e) } ∩ Uj (3)

By Lemma 1, there are infinitely many stages s such that Ej ⊆ Uj,s for all
0 ≤ j ≤ e. Moreover, at each such stage s ≥ te, i(e) = i(e, s) by definition of the
construction. On the other hand, as |Xi(e)| > |Di(e)|, we see that Xi(e) = S ∪ T
with S 6= ∅ and S ∩ T = ∅ where

T = { r | (∃(k, j) ∈ De
i(e))[ 〈qk, r〉 ∈ Uj ] } ∩ Xi(e)

and S = Xi(e) \ T . By definition of S there is a stage t̂e ≥ te such that, for all

s ≥ t̂e, and for every r ∈ S, there is no (k, j) ∈ Di(e) such that 〈qk, r〉 ∈ Uj,s.
For each r ∈ S, let the in-age of r relative to Di(e) be the greatest stage s such
that 〈qk, r〉 ∈ Uj,s for some (k, j) ∈ Di(e) if such a stage exists, and otherwise
define the in-age of r to be 0. Define M ⊆ S to be the elements of S of least
in-age relative to Di(e), and choose m to be the least number in M . (Note that
by definition M = Xi(e) if i(e) = 0.) Now, for each 0 ≤ j ≤ e define

Êj = { 〈qk, r〉 | r ∈ Xi(e) & k ≤ e & (k, j) ∈ De
i(e) } ∩ Uj .

8 We could also simply define Ej = { 〈qk, r〉 | r ∈ Ze & k ≤ e } ∩ Uj with the same
result.
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By Lemma 1 we know that there exists a stage ue ≥ t̂e such that, not only
Ej ⊆ Uj,ue

for all 0 ≤ j ≤ e (with Ej defined as in (3)), so that i(e, ue) = i(e),

but also Êj ⊆ Uj for each such j so that, by definition m(e, ue) = m and
moreover, m(e, s) = m for all stages s ≥ ue such that i(e, s) = i(e). Accordingly,
letting m(e) = m we see that m(e) is the witness for Re at every such stage s
and |I(e, s)| = m(e). Moreover, at every stage s ≥ se such that i(e, s) 6= i(e), we
know that i(e, s) > i(e) as ue ≥ se. However this implies that m(e, s) > m(e) at
every such stage s as m(e, s) ∈ Xi(e,s) and minXi(e,s) > maxXi(e) ≥ m(e). It
follows that F (qe) = |I(e)| = m(e).

Note 4. Suppose that B is a linear ordering and ι : B ∼= L is an isomorphism.
Suppose also that F̂ : Q → N \ {0} is a maximal block function of B and that

Î(0), Î(1), Î(2), . . . is an assignment of F̂ to B. Now note that we have a listing
of labels of L ,

m0,m1,m2, . . .

such that
ι : Î(j) ∼= I(mj)

(i.e. I(mj) is the isomorphic image of Î(j) under ι) for all j ≥ 0. Moreover
there must be infinitely many labels j of B such that mj ≥ j. Indeed, suppose
otherwise so that for some l, for all j ≥ l we havemj < j. Choosem = max {mj |
j < l } ∪ {l}+ 1. Then, under our assumption,

ι∗({n | n ≤ m }) ⊆ {n | n < m }

where ι∗ is the map over labels induced by ι. Thus ι∗ is not one-one. This
contradicts the fact that ι is an isomorphism. We therefore conclude that there
are infinitely many pairs of labels (k, e) with k ≤ e such that ι : Î(k) ∼= I(e).

Choose any B, ι, F̂ and assignment Î(0), Î(1), Î(2), . . . as in Note 4. Consider
any index j ≥ 0 and suppose that Uj is the graph of a function Gj with domain

Q. As above, choose k ≥ j such that ι : Î(k) ∼= I(e) for some e ≥ k. Now, by
definition of the construction, (k, j) ∈ Di(e). However this implies that

Gj(qk) 6= m(e) = F (qe) = |I(e)| = |Î(k)| .

Note in the above argument that the choice of F̂ , and of its assignment to
B, as also of the isomorphism ι : B ∼= L , was in each case arbitrary. Notice
also that the same observation holds for the choice of the index j ≥ 0, and of
the linear ordering B ∼= L . We can thus conclude that, for any Π0

2 function
G : Q → N \ {0} and any B ∼= L , B does not have order type τ =

∑
{G(q) |

q ∈ Q }. ut

Note 5. We can choose any p ≥ 0 and replace F : Q → N \ {0} by F : Q →
N\{0, . . . , p} in the statement of Theorem 2, by a simple adjustment of the proof,
so ensuring that L contains no maximal blocks of size p or less. We can also
clearly force F to be injective (so making L rigid). For example if we define each
Ze as before but such that minZe+1 > maxZe we obtain F strictly increasing.



10 Charles M. Harris

We conclude by noting another application of our proof technique and how
this yields an alternative proof9 of Theorem 2 via the work of either Kach or
(Kenneth) Harris. Indeed, a straightforward adaptation of the framework of the
proof of Theorem 2 can be applied to show that there exists a 0-limitwise mono-
tonic set10 S ⊆ N \ {0, 1} such that S is the range of no Π0

1 function11 G (with
domain N). Relativising this result we obtain a 0′-limitwise monotonic set S such
that the shuffle sum of S derived via the proof of Proposition 2.1 of [Kac08] and
the η-representation of S derived via the proof of Theorem 3.3 of [Har08] are
both examples of η-like computable linear orderings having no isomorphic copy
with Π0

2 maximal block function12.
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