On universal instances of principles in Reverse mathematics

Ludovic PATEY *PPS, Paris 7*

April 29, 2014

SUMMARY

Introduction

From theorems to principles Effectiveness of principles

Principles admitting a universal instance

König's lemma Rainbow Ramsey theorem for pairs Other principles

PRINCIPLES ADMITTING NO UNIVERSAL INSTANCE

General method Lowness and SADS Δ_2^0 non-high sets and AMT Low₂ness, STS(2) and SADS Δ_2^0 sets and SRRT₂²

SHAPE OF OUR THEOREMS

Consider "ordinary" theorems

- (König's lemma) Every infinite tree finitely branching has an infinite path.
- ► (Ramsey theorem) *Every* coloring of tuples into finitely many colors *has* an infinite monochromatic subset.
- ► (Atomic model theorem) *Every* complete atomic theory *has* an atomic model.
- ▶ ..

OBSERVATION

Many theorems are of the form

$$(\forall X)(\exists Y)\Phi(X,Y)$$

where Φ is an arithmetical formula.

SHAPE OF OUR THEOREMS

INTRODUCTION 0000000

Theorems usually come with a natural class of *instances*.

- ► In König's lemma, the infinite trees finitely branching
- ► In Ramsey theorem, the colorings of tuples into finitely many colors
- ► In AMT, the complete atomic theories

Given an instance X, a Y such that $\Phi(X, Y)$ holds is called a solution (of X).

EFFECTIVENESS

- ► Theorems are not all effective.
- Some theorems have computable instances with no computable solution.

Theorem (Kreisel)

There exists an infinite computable binary tree with no infinite computable path.

EFFECTIVENESS

Question

Are there instances harder to solve than any other?

We need to give a precise definition of "harder".

EFFECTIVENESS

Definition

A instance I is harder than another instance J if every solution of I computes a solution to J.

A computable instance harder than every computable instance is called a *universal instance*.

UNIVERSAL INSTANCE

Which principles admit a universal instance?

SUMMARY

INTRODUCTION

From theorems to principles Effectiveness of principles

PRINCIPLES ADMITTING A UNIVERSAL INSTANCE

König's lemma Rainbow Ramsey theorem for pairs Other principles

PRINCIPLES ADMITTING NO UNIVERSAL INSTANCE

General method Lowness and SADS Δ_2^0 non-high sets and AMT Low₂ness, STS(2) and SADS Δ_2^0 sets and SRRT₂²

DEFINITIONS

Definition (Tree)

- ► A tree is a downward closed subset of $\mathbb{N}^{<\mathbb{N}}$ under \leq .
- ▶ A tree T is finitely branching if for every $\sigma \in T$, there are finitely many n such that $\sigma n \in T$.
- ▶ A tree is binary if it is a subset of $2^{<\mathbb{N}}$.

Definition (Path)

A path on a tree T is a set $X \in \mathbb{N}^{\mathbb{N}}$ such that $X \upharpoonright n \in T$ for each n. [T] is the collection of paths of T.

KÖNIG'S LEMMA

Definition (König's lemma)

Every infinite tree finitely branching has a path.

Definition (Weak König's lemma)

Every infinite binary tree has a path.

WEAK KÖNIG'S LEMMA

Theorem (Solovay)

Weak König's lemma admits a universal instance.

Definition

A function f is d.n.c. relative to X if $(\forall e)f(e) \neq \Phi_e^X(e)$.

Proof.

- ► For every infinite computable binary tree T, every $\{0,1\}$ -valued d.n.c. function computes a path in T.
- ► There exists a computable binary tree whose paths are exactly {0,1}-valued d.n.c. functions.

KÖNIG'S LEMMA

Theorem (Jockusch & al.)

König's lemma admits a universal instance.

Proof.

- ▶ For every infinite computable tree T finitely branching, every $\{0,1\}$ -valued d.n.c. function relative to \emptyset' computes a path in T.
- ▶ There exists a computable tree finitely branching whose paths are exactly $\{0,1\}$ -valued d.n.c. function relative to \emptyset' .

WEAK WEAK KÖNIG'S LEMMA

Definition

A binary tree T has positive measure if

$$\lim_{n} \frac{|\{\sigma \in T : |\sigma| = n\}|}{2^n} > 0$$

Definition (Weak weak König's lemma)

Every binary tree of positive measure has a path.

WEAK WEAK KÖNIG'S LEMMA

Theorem (Kucera)

Weak weak König's lemma admits a universal instance.

Definition

A Martin-Löf random is a set X such that $K(X \upharpoonright n) \ge n - c$ for some constant c, where K is prefix-free Kolmogorov complexity.

Proof.

- ► For every computable binary tree *T* of positive measure, every Martin-Löf random is, up to prefix, a path in *T*.
- ► There exists a computable binary tree of positive measure whose paths are all Martin-Löf randoms.

RAINBOW RAMSEY THEOREM FOR PAIRS

Definition

A coloring function $f : [\mathbb{N}]^n \to \mathbb{N}$ is k-bounded if for each color i, $|f^{-1}(i)| \le k$. An infinite set H is a rainbow for f if f is injective over $[H]^n$.

Definition (Rainbow Ramsey theorem for pairs)

Every 2-bounded function $f : [\mathbb{N}]^2 \to \mathbb{N}$ *has a rainbow.*

RAINBOW RAMSEY THEOREM FOR PAIRS

Theorem (Miller)

The rainbow Ramsey theorem for pairs admits a universal instance.

Proof.

- ► For every computable 2-bounded function $f : [\mathbb{N}]^2 \to \mathbb{N}$, every function d.n.c. relative to \emptyset' computes a rainbow for f.
- ▶ There exists a computable 2-bounded function $f : [\mathbb{N}]^2 \to \mathbb{N}$ such that every rainbow for f computes a function d.n.c. relative to \emptyset' .

OTHER PRINCIPLES

There exists a few other principles admitting a universal instance.

- ► Finite Intersection Property (Downey & al.)
- ► Ramsey-type weak weak König's lemma (Bienvenu & al.)

SUMMARY

INTRODUCTION

From theorems to principles Effectiveness of principles

PRINCIPLES ADMITTING A UNIVERSAL INSTANCE

König's lemma Rainbow Ramsey theorem for pairs Other principles

PRINCIPLES ADMITTING NO UNIVERSAL INSTANCE

General method Lowness and SADS Δ_2^0 non-high sets and AMT Low₂ness, STS(2) and SADS Δ_2^0 sets and SRRT₂²

A SIMPLE METHOD

Fix a principle *P*.

- ▶ Prove that every computable instance of P has a solution satisfying some property (e.g. Δ_2^0 , low, ...)
- ▶ Prove that for every set *X* satisfying this property, there exists a computable instance *I* of *P* such that *X* does not compute a solution for *I*.
- ► Then P does not admit a universal instance.

GENERAL METHOD

Definition (Computable reducibility)

A principle P is computably reducible to Q ($P \le_c Q$) if for every instance I of P, there exists an I-computable instance J of Q such that for every solution X of J, $X \oplus I$ computes a solution of I.

Almost every proof of implication between principles in reverse mathematics is in fact a computable reduction.

GENERAL METHOD

Fix two principles *P* and *Q*.

- ► Prove that every computable instance of *P* has a solution satisfying some property.
- ► Prove that for every set *X* satisfying this property, there exists a computable instance *I* of *Q* such that *X* does not compute a solution for *I*.
- ► Then no principle R such that $Q \leq_c R \leq_c P$ admit a universal instance.

ASCENDING DESCENDING SEQUENCE

Definition (Ascending Descending sequence)

Every linear order has an infinite ascending or descending sequence.

Definition (Stable ascending Descending sequence)

Every linear order of order type $\omega + \omega^*$ has an infinite ascending or descending sequence.

ASCENDING DESCENDING SEQUENCE

Theorem (Hirschfeldt & al.)

Fix a principle P such that $SADS \leq_c P$. If every computable instance of P admits a low solution, then P admits no universal instance.

Proof.

For every low set X, there exists a computable linear order of order type $\omega + \omega^*$ having no X-computable infinite ascending or descending sequence.

Corollary

SADS, but also SCAC (every stable partial order has an infinite chain or antichain) admit no universal instance.

Definition

A function f dominates a function g is $f(x) \ge g(x)$ for cofinitely many x.

Definition (Atomic model theorem)

For every Δ_2^0 function f, there exists a function g which is not dominated by f.

Theorem (Martin)

Fix a principle P such that $AMT \leq_c P$. If every computable instance of P admits a Δ_2^0 non-high solution, then P admits no universal instance.

Proof.

For any Δ_2^0 set X, a function is high relative to X iff it computes a function dominating every X-computable function.

Corollary

AMT, but also SADS and SCAC admit no universal instance.

Definition

Given a function $f : [\mathbb{N}]^n \to k$, a set H is homogeneous for f if there exists a color i < k such that $f([H]^n) = k$.

Definition (Ramsey theorem for tuples)

Every function $f: [\mathbb{N}]^n \to k$ has an infinite homogeneous set.

We write RT_k^n to denote Ramsey theorem restricted to colorings over n-uples with k colors and SRT_k^n to denote the restriction of RT_k^n to stable colorings.

Theorem (Mileti)

Fix a principle P such that $SRT_2^n \leq_c P$. If every computable instance of P admits a low₂ over $\emptyset^{(n-2)}$ solution then P admits no universal instance.

Proof.

By a finite injury priority construction.

Corollary

For every $n \ge 2$, RT_2^n and SRT_2^n admit no universal instance.

Theorem (Patey)

Fix a principle P such that $SADS \leq_c P$. If every computable instance of P admits a low₂ solution then P admits no universal instance.

Corollary

CAC, SCAC, ADS, SADS admit no universal instance.

Definition

Given a function $f : [\mathbb{N}]^n \to \mathbb{N}$, an infinite set H is thin for f if $f([H]^n) \neq \mathbb{N}$.

Definition (Thin set theorem)

Every function $f: [\mathbb{N}]^n \to \mathbb{N}$ has an infinite set thin for f.

We write TS(n) to denote thin set theorem restricted to colorings over n-uples and STS(n) to denote the restriction of STS(n) to stable colorings.

Theorem (Patey)

Fix a principle P such that $STS(n) \leq_c P$. If every computable instance of P admits a low₂ over $\emptyset^{(n-2)}$ solution then P admits no universal instance.

Corollary

For every $n \ge 2$, TS(n), STS(n), RT_2^n , SRT_2^n , FS(n) (Free set) admit no universal instance.

STABLE RAMSEY THEOREM FOR PAIRS

Theorem (Mileti)

Fix a principle P such that $SRT_2^n \leq_c P$. If every computable instance of P admits an incomplete Δ_2^0 solution then P admits no universal instance.

Proof.

By a finite injury priority construction.

Corollary

 SRT_2^2 admits no universal instance.

STABLE RAINBOW RAMSEY THEOREM FOR PAIRS

Definition

A 2-bounded function $f : [\mathbb{N}]^2 \to \mathbb{N}$ is rainbow-stable if for every x, there is a y such that f(x,s) = f(y,s) for cofinitely many s.

Definition

Stable rainbow Ramsey theorem for pairs Every rainow-stable 2-bounded function $f: [\mathbb{N}]^2 \to \mathbb{N}$ admits a rainbow.

 $SRRT_2^2$ is computably equivalent to the statement "for every Δ_2^0 function f, there exists a function g such that $f(x) \neq g(x)$ for each x."

STABLE RAINBOW RAMSEY THEOREM FOR PAIRS

Theorem (Patey)

Fix a principle P such that $SRRT_2^n \leq_c P$. If every computable instance of P admits an incomplete Δ_2^0 solution then P admits no universal instance.

Proof.

By a finite injury priority construction.

Corollary

SRRT₂, SRT₂, STS(2), SEM (stable Erdös Moser theorem) admit no universal instance.

CONCLUSION

- ► Few Ramseyan principles admit a universal instance.
- ► Previous sentence is a too short conclusion, so I add this one.

REFERENCES

Chris I Conidis.

Classifying model-theoretic properties.

Journal of Symbolic Logic, pages 885–905, 2008.

Barbara F Csima, Denis R Hirschfeldt, Julia F Knight, and Robert I Soare.

Bounding prime models. Journal of Symbolic Logic, pages 1117–1142, 2004.

Denis R. Hirschfeldt and Richard A. Shore.

Combinatorial principles weaker than Ramsey's theorem for pairs. Journal of Symbolic Logic, 72(1):171–206, 2007.

Joseph Roy Mileti.

Partition theorems and computability theory. PhD thesis, 2004.

Ludovic Patey.

Somewhere over the rainbow Ramsey theorem for pairs.

Ongoing project.

QUESTIONS

Thank you for listening!