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Motivation

In computability theory, one major concern is to determine which
problems are solvable by Turing machines and which ones are not.

I For a given set of natural numbers S , is there an effective
procedure for determining membership in S?

If a given problem is shown to be effectively unsolvable, we can
further ask: Just how unsolvable is it?

In fact, there are a number of hierarchies for classifying the
difficulty of solving various problems.



An alternative approach

In these investigations of the solvability/unsolvability of problems,
the computations are carried out by Turing machines (often
equipped with an oracle).

What picture would emerge if instead we were to work with some
model of probabilistic Turing machine?

Is there a reasonable degree structure for studying something like
the degrees of solvability or the degrees of unsolvability of a class
of problems with respect to probabilistic computation?

As we will see shortly, the degree structure I will discuss today can
be seen as measuring the degree of probabilistic solvability of a
given problem.



Which problems?

Which problems should we attempt to solve probabilistically?

If the problems we consider are those of determining the members
of some subset of the natural numbers, the degrees of solvability
are uninteresting.

Theorem (Sacks)

A sequence is computable with positive probability if and only if it
is computable.

In the context of probabilistic computation, to get a more
interesting degree structure, we need to investigate the degree of
solvability of collections of sequences.



Turing invariant subsets of 2ω

The collections of sequences we will consider are Turing invariant
collections:

A ⊆ 2ω is Turing invariant for every X ∈ A and Y ∈ 2ω, if X and
Y have the same Turing degree, then Y ∈ A.

The goal of today’s talk is to discuss recent work on a degree
structure that measures the degree of solvability of Turing
invariants subsets of 2ω in terms of probabilistic computation.

We call this degree structure the invariant degrees.
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1. Probabilistic Turing computation



Two approaches to probabilistic computation

One standard definition of a probabilistic Turing machine is a
non-deterministic Turing machine whose transitions are chosen
according to some probability distribution.

Alternatively, one can define a probabilistic machine to be an
oracle Turing machine with some algorithmically random sequence
as an oracle.

Key idea: For the purposes of computing a sequence or some
sequence in a fixed class collection with positive probability, these
two approaches are equivalent.



Ingredient #1: Turing functionals

The first ingredient for the model of probabilistic computation that
we’ll be working with is the notion of a Turing functional.

Definition
A Turing functional Φ : 2ω → 2ω is a computably enumerable set
of pairs of strings (σ, τ) such that if (σ, τ), (σ′, τ ′) ∈ Φ and
σ � σ′, then τ � τ ′ or τ ′ � τ .

If Φ(B)↓ = A, then we say that A is Turing reducible to B,
denoted A ≤T B.

Moreover, A is Turing equivalent to B (or A has the same Turing
degree as B), denoted A ≡T B, if A ≤T B and B ≤T A.



Ingredient #2: Algorithmically random sequences

The second ingredient for our model of probabilistic computation is
the notion of an algorithmically random sequence.

There are a number of different definitions of algorithmic random
sequences, many of which are not equivalent (but they differ from
one another on a set of measure zero).

One common form of many of these definitions is that a sequence
is held to be random if it avoids a certain kind of null set.



The Lebesgue measure on 2ω

Given σ ∈ 2<ω,
JσK := {X ∈ 2ω : σ ≺ X}.

These are the basic open sets of 2ω.

The Lebesgue measure on 2ω is defined by

λ(JσK) = 2−|σ|.

λ can be extended to all Borel subsets of 2ω in the standard way.



Martin-Löf randomness

Definition

I A Martin-Löf test is a sequence (Ui )i∈ω of uniformly
effectively open subsets of 2ω such that for each i ,

λ(Ui ) ≤ 2−i .

I X passes the Martin-Löf test (Ui )i∈ω if X /∈
⋂

i Ui .

I X ∈ 2ω is Martin-Löf random, denoted X ∈ MLR, if X passes
every Martin-Löf test.



Alternative definitions of randomness

I Schnorr randomness (SR): replace the condition λ(Ui ) ≤ 2−i

with λ(Ui ) = 2−i ;

I weak 2-randomness (W2R): replace the condition λ(Ui ) ≤ 2−i

with limi→∞ λ(Ui ) = 0;

I 2-randomness (2MLR): replace the sequence (Ui )i∈ω with a
sequence of uniformly ∅′-effectively open sets (U∅′i )i∈ω;

I Kurtz randomness (KR): replace the sequence (Ui )i∈ω with a
sequence of uniformly effectively clopen sets (Ci )i∈ω.

2MLR ( W2R ( MLR ( SR ( KR
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Putting the ingredients together

Let S ⊆ 2ω.

Problem P: Probabilistically compute a member of S.

A solution to the problem P: There is a Turing functional Φ such
that

λ({X ∈ 2ω : Φ(X ) ∈ S}) > 0.

Equivalently, we can require

λ({X ∈ MLR : Φ(X ) ∈ S}) > 0.

In fact, we can replace MLR with any of 2MLR, W2R, SR, KR, or
any reasonable notion of algorithmic randomness.



Taking stock

We’ve now laid out the model of probabilistic computability in
terms of which the invariant degrees are defined.

We now need a way to show that one class of sequences is more
solvable than another.

To define such an order, the key notion we will draw upon is that
of negligibility.



2. Negligibility and semi-measures



The definition of negligibility

A subset A of 2ω is negligible if we cannot compute some member
of A with positive probability.

That is,
λ
(
{X ∈ 2ω : (∃Y ∈ A)[Y ≤T X ]}

)
= 0.

We can also provide a useful equivalent formulation of negligibility
in terms of left-c.e. semi-measures.



Left-c.e. semi-measures

A semi-measure ρ : 2<ω → [0, 1] satisfies

I ρ(∅) = 1 and

I ρ(σ) ≥ ρ(σ0) + ρ(σ1) for every σ ∈ 2<ω.

A semi-measure ρ is left-c.e. if each value ρ(σ) is the limit of a
non-decreasing computable sequence of rationals, uniformly in σ.



Semi-measures and Turing functionals

For σ ∈ 2<ω, we define Φ−1(σ) := {X ∈ 2ω : ∃n (X �n, σ) ∈ Φ}.

Proposition

(i) If Φ is a Turing functional, then λΦ, defined by

λΦ(σ) = λ(Φ−1(σ))

for every σ ∈ 2<ω, is a left-c.e. semi-measure.

(ii) For every left c.e. semi-measure ρ, there is a Turing functional
Φ such that ρ = λΦ.



A universal semi-measures

Levin proved the existence of a universal left-c.e. semi-measure.

A left-c.e. semi-measure M is universal if for every left-c.e.
semi-measure ρ, there is some c ∈ ω such that

ρ(σ) ≤ c ·M(σ)

for every σ ∈ 2<ω.



Defining negligibility in terms of semi-measures

Let M be a universal left-c.e. semi-measure.

Let M be the largest measure such that M ≤ M, which can be
seen as a universal measure.

Proposition

S ⊆ 2ω is negligible if and only if M(S) = 0.

Proof idea: Use the correspondence between Turing functionals
and left-c.e. semi-measures and the fact that M multiplicatively
dominates all left-c.e. semi-measures to show

M(S) = 0 if and only if λ
(⋃
i∈ω

Φ−1
i (S)

)
= 0

for every S ⊆ 2ω (where (Φi )i∈ω is an effective enumeration of all
Turing functionals).



3. The invariant degrees



The ordering ≤I

Given Turing invariant classes A,B ⊆ 2ω, we define

A ≤I B ⇔ A \ B is negligible.

What does this mean?

If A \ B is negligible, then

M(A) = M(A ∩ B) + M(A \ B) = M(A ∩ B).

In general, A ≤I B tells us that any probabilistic algorithm that
produces a member of A with probability > p for some p ∈ (0, 1)
also produces a member of a member of B with probability > p.



The collection of invariant degrees

As usual, we write A ≡I B whenever we have A ≤I B and B ≤I A.

For Turing invariant A ⊆ 2ω, the invariant degree of A is

degI (A) = {B ⊆ 2ω : B is Turing invariant and A ≡I B}.

For an arbitrary S ⊆ 2ω, we will write degI (S) as shorthand for
degI ((S)≡T ).

The collection of invariant degrees is denoted DI .



A few observations

Observation 1: The collection of Turing invariant subsets of 2ω

forms a Boolean algebra under the operations of ∪, ∩, and c .

Observation 2: A ≡I B if and only if M(A ∆ B) = 0.

Observation 3: The previous two observations imply that (DI ,M)
forms a measure algebra.



General properties of DI

I The bottom degree of DI consists of all Turing invariant
negligible sets.

I The top degree of DI consists of all sets of the form 2ω \ A,
where A is Turing invariant and negligible.

I DI is atomic: There exists a Turing invariant A ⊆ 2ω such
that for any Turing invariant B ⊆ A, either B is negligible or
A ≡I B.

I The collection of computable sets forms an atom of DI (Levin,
V’yugin).

I The collection of sequences Turing equivalent to a Martin-Löf
random sequence forms an atom of DI (Levin, V’yugin).



Levin’s question

Let C denote the collection of computable sequences. Do we have

degI (MLR ∪ C) = degI (2ω)?

In other words, is 2ω \ (MLR ∪ C) negligible?

A negative answer was first provided by V’yugin, who proved a
very general result.

Theorem (V’yugin)

For every ε > 0, there is a probabilistic algorithm that produces
with probability greater than 1− ε a non-computable sequence
that does not compute any Martin-Löf random sequence.

In the final part of the talk, I will discuss the technique V’yugin
used to prove this result.



An alternative answer

We can also answer Levin’s question by means of the following
result:

Theorem (Kautz, Kurtz)

Every 2-random computes a 1-generic.

Let G denote the collection of 1-generic sequences.

I By the above result, G (and hence (G)≡T ) is non-negligible.

I Moreover, (G)≡T ∩ (MLR)≡T = ∅
I Thus, degI (MLR) and degI (G) are incomparable with respect

to ≤I .



What about other notions of randomness?

Proposition (Bienvenu, Hölzl, Porter)

2MLR ≡I W2R ≡I MLR ≡I SR

Proof.

I Since 2MLR ⊆W2R ⊆ MLR ⊆ SR, it follows that
2MLR ≤I W2R ≤I MLR ≤I SR.

I If X ∈ MLR \ 2MLR, X cannot be computed by a 2-random
(by the XYZ -theorem, if X is computable from a 2-random, it
must be 2-random). Thus MLR \ 2MLR is negligible.

I (W2R \ 2MLR) ⊆ (MLR \ 2MLR), which implies that
W2R \ 2MLR is negligible.

I Every X ∈ SR \MLR has high degree, but no 3-random can
compute a sequence of high degree. Thus SR \MLR is
negligible.
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One outlier: Kurtz randomness

Proposition (Bienvenu, Hölzl, Porter)

(1) MLR <I KR and G <I KR

(2) KR ≡I HI ≡I WG, where HI consists of all sequences of
hyperimmune Turing degree and WG consists of all weakly
1-generic sequences.

To establish (1) we use the fact that MLR ∪ G ⊆ KR.

To establish (2) we use the following facts:

I The Turing degrees of weakly 1-generics are precisely the
hyperimmune degrees.

I Every weakly 1-generic is Kurtz random.

I If X ∈ KR \ HI, then X has hyperimmune-free degree and is
thus weakly 2-random. This implies that X ∈W2R \ 2MLR,
which we have already shown is negligible.
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Diagonal non-computability

Recall:

I A total function f is a DNC function if f (e) 6= φe(e) for every
e, where (φe)e∈ω is the collection of partial computable
functions.

I X ∈ 2ω has DNC Turing degree if X computes a DNC
function.

Every X ∈ MLR has DNC Turing degree, and hence it follows that
MLR ≤IDNC.

What about the converse?

Theorem (Bienvenu, Patey)

DNC \MLR is non-negligible. In particular, MLR <I DNC.



4. V’yugin’s technique for constructing
semi-measures



Revisiting V’yugin’s theorem

Theorem (V’yugin)

For every ε > 0, there is a probabilistic algorithm that produces
with probability greater than 1− ε a non-computable sequence
that does not compute any Martin-Löf random sequence.

An analysis of V’yugin’s proof shows that he proves the following.

Theorem
For every ε > 0, there is a Π0

1 class P and a left-c.e. semi-measure
ρ such that

I ρ(P) > 1− ε, and

I no member of P computes any Martin-Löf random sequence.



The general idea 1

I Identify 2<ω with a directed graph, where the arrows point in
only one direction, away from the root.

Identify a semi-measure on 2ω with a network flow on the
directed graph.

Give the empty string ε amount of flow equal to 1.

The sum of the flow into the two extensions σ0 and σ1 of a
node σ cannot exceed the amount of flow into σ.

Flow can leak out of the system.

We have an infinite number of requirements coded by pairs
(i , n) which are satisfied by a string σ if |Φσ

i | > f (n) for some
fixed computable function f .
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The general idea 1

I Identify 2<ω with a directed graph, where the arrows point in
only one direction, away from the root.

I Identify a semi-measure on 2ω with a network flow on the
directed graph.

I Give the empty string ε amount of flow equal to 1.

I The sum of the flow into the two extensions σ0 and σ1 of a
node σ cannot exceed the amount of flow into σ.

I Flow can leak out of the system.

I We have an infinite number of requirements coded by pairs
(i , n) which are satisfied by a string σ if |Φσ

i | > f (σ, n) for
some fixed computable function f .



The general idea 2

I Associate to each level of 2<ω a requirement in such a way
that every requirement occurs infinitely often.

The general strategy is to block flow at nodes where a
requirement first appears; if we can satisfy that requirement,
we mount an additional edge on 2<ω and pass the blocked
flow through that edge.

Some nodes will have all flow blocked from them; the key to
the construction is to ensure that this doesn’t happen too
often.

At the same time, we have to ensure that the remaining paths,
whose initial segments never have all of their flow completely
blocked, cannot compute a Martin-Löf random sequence.





0



0

1



0

0

1



0

0

1

1



0

0

1

1

2



0

0

0

1

1

2



0

0

0

1

1

2

1



0

0

0

1

1

2

1

2



0

0

0

1

1

2

3

1

2



0

0

0

1

1

2

3

1

2

0



The general idea 2

I Associate to each level of 2<ω a requirement in such a way
that every requirement occurs infinitely often.

I The general strategy is to block flow at nodes where a
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we mount an additional edge on 2<ω and pass the blocked
flow through that edge.

Some nodes will have all flow blocked from them; the key to
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whose initial segments never have all of their flow completely
blocked, cannot compute a Martin-Löf random sequence.
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The general idea 2

I Associate to each level of 2<ω a requirement in such a way
that every requirement occurs infinitely often.

I The general strategy is to block flow at nodes where a
requirement first appears; if we can satisfy that requirement,
we mount an additional edge on 2<ω and pass the blocked
flow through that edge.

I Some nodes will have all flow blocked from them; the key to
the construction is to ensure that this doesn’t happen too
often.

I At the same time, we have to ensure that the remaining paths,
whose initial segments never have all of their flow completely
blocked, cannot compute a Martin-Löf random sequence.



Applications to the invariant degrees

Using more complicated versions of this technique, V’yugin proves
the following results:

Theorem (V’yugin)

DI has countably many atoms.

Theorem (V’yugin)

The union of the atoms of DI is not I -equivalent to the top
element.



Improving V’yugin’s theorem

In joint work with Rupert Hölzl, we obtained the following:

Theorem (Hölzl, Porter)

For every ε > 0, there is a Π0
1 class P and a left-c.e. semi-measure

ρ such that

I ρ(P) > 1− ε, and

I no member of P computes any sequence of DNC degree.

Idea: Modify the original V’yugin construction while making use of
a characterization of Simpson and Stephan of sequences of DNC
degree in terms of f -randomness.



Thank you for your attention.


