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circuits
. . .

And

Church Thesis
All reasonable discrete models of computation are equivalent.
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Several models:
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Computable Analysis
GPAC (General Purpose Analog Computer)
. . .

Questions:
Church Thesis for analog computers ? ⇒ No (GPAC 6= BSS)
Comparison with digital models of computation ? ⇒ How ?
What is a “reasonable” model ? ⇒ Unclear

Pouly, Bournez, Graça Computational Complexity of the GPAC April 28, 2014 2 / 28



Introduction GPAC

GPAC

General Purpose Analog Computer
by Claude Shanon (1941)

idealization of an analog computer: Differential Analyzer
circuit built from:

k k

A constant unit

+ u + v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫ ∫
u dv

An integrator unit

u
v

Pouly, Bournez, Graça Computational Complexity of the GPAC April 28, 2014 3 / 28



Introduction GPAC

GPAC

General Purpose Analog Computer
by Claude Shanon (1941)
idealization of an analog computer: Differential Analyzer

circuit built from:

k k

A constant unit

+ u + v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫ ∫
u dv

An integrator unit

u
v

Pouly, Bournez, Graça Computational Complexity of the GPAC April 28, 2014 3 / 28



Introduction GPAC

GPAC

General Purpose Analog Computer
by Claude Shanon (1941)
idealization of an analog computer: Differential Analyzer
circuit built from:

k k

A constant unit

+ u + v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫ ∫
u dv

An integrator unit

u
v

Pouly, Bournez, Graça Computational Complexity of the GPAC April 28, 2014 3 / 28



Introduction GPAC

GPAC: beyond the circuit approach

Theorem
y is generated by a GPAC iff it is a component of the solution y =
(y1, . . . , yd ) of the Polynomial Initial Value Problem (PIVP):{

y ′ = p(y)
y(t0)= y0

where p is a vector of polynomials.

Remark
Other point of view: continuous dynamical system

Pouly, Bournez, Graça Computational Complexity of the GPAC April 28, 2014 4 / 28



Introduction GPAC

GPAC: beyond the circuit approach

Theorem
y is generated by a GPAC iff it is a component of the solution y =
(y1, . . . , yd ) of the Polynomial Initial Value Problem (PIVP):{

y ′ = p(y)
y(t0)= y0

where p is a vector of polynomials.

Remark
Other point of view: continuous dynamical system

Pouly, Bournez, Graça Computational Complexity of the GPAC April 28, 2014 4 / 28



Introduction GPAC

GPAC: examples

Example (One variable, linear system)

∫
et

{
y ′ = y

y(0)= 1t
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et
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y(0)= 1t

Example (Two variable, nonlinear system)

×

×−2
× ∫ 1

1+t2


y ′ = −2ty2

y(0)= 1
t ′ = 1

t(0)= 0
t
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Introduction GPAC

GPAC: examples

Example (Two variables, linear system)

−1 ×
∫ ∫

sin(t)


y ′ = z
z ′ = −y

y(0)= 0
z(0)= 1

t
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GPAC: examples

Example (Two variables, linear system)

−1 ×
∫ ∫

sin(t)


y ′ = z
z ′ = −y

y(0)= 0
z(0)= 1

t

Example (Not so nice example)

∫ ∫
. . .

∫
t yn(t)


y ′1= y1
y ′2= y2y ′1
...

y ′n= yny ′n−1n integrators
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−1 ×
∫ ∫

sin(t)


y ′ = z
z ′ = −y

y(0)= 0
z(0)= 1

t

Example (Not so nice example)

∫ ∫
. . .

∫
t yn(t)


y1(t)= et

y2(t)= eet

. . .

yn(t)= ee. .
.t

n integrators
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Introduction GPAC

Motivation

1 Study the computational power of such systems:

(asymptotical) (properties of) solutions
reachability properties
attractors

2 Use these systems as a model of computation
on words
on real numbers
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Introduction Computable Analysis

Computable real

Definition (Computable Real)
A real r ∈ R is computable is one can compute an arbitrary close ap-
proximation for a given precision:

Given p ∈ N, compute rp s.t. |r − rp| 6 2−p

Example
Rational numbers, π, e, . . .

Example (Non-computable real)

r =
∞∑

n=0

dn2−n

where
dn = 1⇔ the nth Turing Machine halts on input n
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Introduction Computable Analysis

Computable function

Definition (Computable Function)
A function f : R → R is computable if there exist a Turing Machine M
s.t. for any x ∈ R and oracle O computing x , MO computes f (x).
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Computable function

Definition (Computable Function)
A function f : R → R is computable if there exist a Turing Machine M
s.t. for any x ∈ R and oracle O computing x , MO computes f (x).

Definition (Equivalent)
A function f : R → R is computable if f is continuous and for a any
rational r one can compute f (r).

Example

Polynomials, trigonometric functions, e·,
√
·, . . .

Example (Counter-Example)

f (x) = dxe
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Introduction Analog Church Thesis

Computable Analysis = GPAC ?

Seems not:
Solutions of a GPAC are analytic
x → |x | is computable but not analytic

Theorem ( )
Computable Analysis 6= General Purpose Analog Computer
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Introduction Analog Church Thesis

Computable Analysis = GPAC ?

Seems not:
Solutions of a GPAC are analytic
x → |x | is computable but not analytic

Theorem ( )
Computable Analysis 6= General Purpose Analog Computer

Can we fix this ?

Pouly, Bournez, Graça Computational Complexity of the GPAC April 28, 2014 10 / 28



Introduction Analog Church Thesis

GPAC: back to the basics
Definition
y is generated by a GPAC iff it is a component of the solution y =
(y1, . . . , yd ) of the ordinary differential equation (ODE):{

y ′ = p(y)
y(t0)= y0

where p is a vector of polynomials

Definition
f is computable by a GPAC iff for all x ∈ R the solution y = (y1, . . . , yd )
of the ordinary differential equation (ODE):{

y ′ = p(y)
y(t0)= q(x)

where p,q is a vector of polynomials

satisfies for all f (x) = limt→∞ y1(t).

Example

t

f (x)

q(x)

y(t)
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Introduction Analog Church Thesis

Computable Analysis = GPAC ? (again)

Theorem (Bournez, Campagnolo, Graça, Hainry)

The GPAC-computable functions are exactly the computable functions
of the Computable Analysis.

Proof.
Any solution to a PIVP is computable + convergence
Simulate a Turing machine with a GPAC
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Introduction Complexity

What about complexity ?

Computable Analysis: nice complexity theory (from Turing
Machines)
General Purpose Analog Computer: nothing

Conjecture
Computable Analysis = General Purpose Analog Computer, at the com-
plexity level

First step: define a notion of complexity
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Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

System #1 #2

ODE
{

y ′(t) = p(y(t))
y(1) = y0


z ′(t) = u(t)p(z(t))
u′(t) = u(t)
z(t0) = y0
u(1) = 1
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Remark

Same curve, different speed: u(t) = et and z(t) = y(et )

Example

t

f (x)

y0(x)

y(t)
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Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

ODE
{

y ′(t) = p(y(t))
y(1) = y0


z ′(t) = u(t)p(z(t))
u′(t) = u(t)
z(t0) = y0
u(1) = 1

Computed Function f (x) = limt→∞ y1(t) = limt→∞ z1(t)
Convergence Eventually Exponentially faster

Time for precision µ tm(µ) tm′(µ) = log(tm(µ))

Example

t

f (x)

y0(x)

y(t)

z(t)

tm(µ)tm′(µ)

µ
‖y1(tm(µ))− f (x)‖ 6 µ
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Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

ODE y ′ = p(y)

{
z ′= up(z)
u′= u

Computed Function f (x) = limt→∞ y1(t) = limt→∞ z1(t)
Time for precision µ tm(µ) tm′(µ) = log(tm(µ))

Bounding box for
ODE at time t

sp(t) sp′(t) = max(sp(et ),et )

Example

t

f (x)
y(t)

z(t)
u(t)

sp(t)

sp′(t)

t

sp(t) = sup
ξ∈[1,t]

‖y(ξ)‖

sp′(t) = sup
ξ∈[1,t]

‖z(ξ),u(ξ)‖
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Toward a Complexity Theory for the GPAC What is the problem

Time Scaling

ODE y ′ = p(y)

{
z ′= up(z)
u′= u

Computed Function f (x) = limt→∞ y1(t) = limt→∞ z1(t)
Time for precision µ tm(µ) tm′(µ) = log(tm(µ))

Bounding box for
ODE at time t

sp(t) sp′(t) = max(sp(et ),et )

Bounding box for
ODE at precision µ

sp(tm(µ)) max(sp(tm(µ)),tm(µ))

Remark
tm(µ) and sp(t) depend on the convergence rate
sp(tm(µ)) seems not
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Toward a Complexity Theory for the GPAC What is the problem

Proper Measures

Proper measures of “complexity”:
time scaling invariant
property of the curve

Possible choices:
Bounding Box at precision µ⇒ Ok but geometric interpretation ?
Length of the curve until precision µ⇒ Much more intuitive
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Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

GPAC Computability (1)

Definition (GPAC-Computable Function)

f ∈ GCOMP(sp,tm) iff ∃p,q polynomials, such that ∀α > 0, ∀ ‖x‖ 6 α,
∃y which satisfies:

∀t > 0, y ′(t) = p(y(t)) and y(0) = q(x)

∀µ > 0,∀t > tm(α, µ), |f (x)− y1(t)| 6 e−µ

∀t > 0, ‖y(t)‖ 6 sp(α, t)

GP = GCOMP(poly,poly)

Remark
implies f (x) = limt→∞ y1(t)
can be extended to multi-dimensional functions
can be defined over arbitrary input domain
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Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

GPAC Computability (2)

Definition (Polytime GPAC-Computable Function (Alternative))

f ∈ GLEN(len) iff ∃p,q polynomial such that ∀α > 0, ∀ ‖x‖ 6 α, ∃y
which satisfies:
∀t > 0, y ′(t) = p(y(t)) and y(0) = q(x)

∀µ > 0,∀t > `−1(len(α, µ)), |f (x)− y1(t)| 6 e−µ

`(t) is the length of the curve y from 0 to t .

GPLEN = GLEN(poly)

Remark
implies f (x) = limt→∞ y1(t)

length of a curve: `(t) =
∫ t

t0
‖p(y(u))‖du

`−1(l) = time to travel a length l on the curve y
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Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Computable Analysis = GPAC

Lemma (oversimplified)

GPLEN = GP

Theorem
The polytime GPAC-computable functions (GP) are exactly the polytime
computable functions of the Computable Analysis.

Proof.
Any solution to a PIVP is polytime computable + exponential
convergence
Simulate a Turing machine with a GPAC
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Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Proof sketch (1)

Theorem
If y(0) = y0 and y ′ = p(y) Then y(t)± e−µ is computable is time

poly(deg(p),L(t), log ‖y0‖ , log Σp, µ)d

where

L(t) =

∫ t

0
Σp max(1, ‖y(u)‖)deg(p)du ≈ length of y over [0, t ]

Remark
For L(t) = poly(t), it shows that y is polytime computable in the sense
of Computable Analysis (nonuniformly).

Proof.
Numerical analysis, for another talk ?
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Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Proof sketch (2)

Simulating a Turing Machine with PIVP directly is tricky, we need more
tools.

Definition (Function Algebra)

A function algebra [F ; OP] is the smallest set of functions containg F
and stable by all operators in OP.

Example

R[X ] = [0,−1,1,X ; +,×]

primitive recursive=[0,S, πi ; ◦,REC]

recursive=[0,S, πi ; ◦,REC,MU]
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Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Proof sketch (3)

Theorem

GP = [GP; LIM, ◦, IT ]

LIM(f ) = x 7→ limω→∞ f (x , ω) + exponential convergence
hypothesis
IT (f ) = (x ,n) 7→ f [n](x) + polynomial modulus of continuity
hypothesis

Proof.
Very technical
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Toward a Complexity Theory for the GPAC Computational Complexity (Real Number)

Proof sketch (4)

f : R→ R polytime computable,M Turing Machine for f , sM one step
ofM

f (x) = lim
µ→∞

M(x , µ)

= lim
µ→∞

lim
n→∞

s[n]
M(x , µ)

and sM can be built using composition and GP.
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Toward a Complexity Theory for the GPAC Classical Computational Complexity

GPAC as Language Recogniser

GPAC as computable real function→ Computable Analysis

GPAC as language recogniser→ classical computability ?

Remark
words ≈ integers ⊆ real numbers
decide ≈ {Yes,No} ≈ {0,1} ⊆ real numbers
language recogniser: special case of real function ?
f : N ⊆ R→ {0,1} ⊆ R
Yes but there is more !
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Toward a Complexity Theory for the GPAC Classical Computational Complexity

Definition (GPAC-Recognisable Language)

L ⊆ N GPAC-recognisable if for any x ∈ N, the solution y to{
y ′ = p(y)

y(t0)= q(x)
where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 (accept)
if x /∈ L then y1(t) 6 −1 (reject)

Theorem
The GPAC-recognisable languages are exactly the recursive lan-
guages.

Remark
What about complexity ?
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Toward a Complexity Theory for the GPAC Classical Computational Complexity

Definition (Polytime GPAC-Recognisable Language)

L ⊆ N poyltime GPAC-recognisable if for any x ∈ N, the solution y to{
y ′ = p(y)

y(t0)= q(x)
where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 (accept)
if x /∈ L then y1(t) 6 −1 (reject)

where t1(x) = `−1(len(log(x)) where `(t) is the length of y from t0 to t
and len a polynomial.

Theorem
The class of polytime GPAC-recognisable languages is exactly P.

Remark (Why log(x) ?)

Classical complexity measure: length of word ≈ log of value
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Toward a Complexity Theory for the GPAC Classical Computational Complexity

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

L ⊆ N non-deterministic poyltime GPAC-recognisable if for any x ∈ N,
the solution y to{

y ′ = p(y ,u)
y(t0)= q(x)

where p,q are vectors of polynomials

satisfies for t > t1(x):
if x ∈ L then y1(t) > 1 for at least one digital controller u
if x /∈ L then y1(t) 6 −1 for all digital controller u

where t1(x) = `−1(len(log(x)) and len a polynomial.

Remark (Digital Controller)

Digital Controller ≈ u : R→ {0,1}

Theorem
The class of non-deterministic polytime GPAC-recognisable languages
is exactly NP.
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Conclusion

Conclusion

Complexity theory for the GPAC

Equivalence with Computable Analysis for polynomial time
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Conclusion

Future Work

Notion of reduction ?

Space complexity ?
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Questions ?

Do you have any questions ?
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