Computational Complexity of the GPAC

Amaury Pouly Joint work with Olivier Bournez and Daniel Graça

April 28, 2014

Pouly, Bournez, Graça

Computational Complexity of the GPAC

April 28, 2014 – ∞ / 28

Outline

Introduction

- GPAC
- Computable Analysis
- Analog Church Thesis
- Complexity

Toward a Complexity Theory for the GPAC

- What is the problem
- Computational Complexity (Real Number)
- Classical Computational Complexity

Conclusion

The case of discrete computations

Many models:

- Recursive functions
- Turing machines
- λ-calculus
- circuits
- . . .

The case of discrete computations

Many models:

- Recursive functions
- Turing machines
- λ-calculus
- circuits
- . . .

And

Church Thesis

All reasonable discrete models of computation are equivalent.

Several models:

- BSS model (Blum Shub Smale)
- Computable Analysis
- GPAC (General Purpose Analog Computer)

• . . .

Several models:

- BSS model (Blum Shub Smale)
- Computable Analysis
- GPAC (General Purpose Analog Computer)

• . . .

Questions:

• Church Thesis for analog computers ?

Several models:

- BSS model (Blum Shub Smale)
- Computable Analysis
- GPAC (General Purpose Analog Computer)

• . . .

Questions:

• Church Thesis for analog computers ? \Rightarrow No (GPAC \neq BSS)

Several models:

- BSS model (Blum Shub Smale)
- Computable Analysis
- GPAC (General Purpose Analog Computer)

• . . .

- Church Thesis for analog computers ? \Rightarrow No (GPAC \neq BSS)
- Comparison with digital models of computation ?

Several models:

- BSS model (Blum Shub Smale)
- Computable Analysis
- GPAC (General Purpose Analog Computer)

• . . .

- Church Thesis for analog computers $? \Rightarrow No (GPAC \neq BSS)$
- Comparison with digital models of computation ? ⇒ How ?

Several models:

- BSS model (Blum Shub Smale)
- Computable Analysis
- GPAC (General Purpose Analog Computer)

• . . .

- Church Thesis for analog computers ? ⇒ No (GPAC ≠ BSS)
- Comparison with digital models of computation $? \Rightarrow How ?$
- What is a "reasonable" model ?

Several models:

- BSS model (Blum Shub Smale)
- Computable Analysis
- GPAC (General Purpose Analog Computer)

• . . .

- Church Thesis for analog computers $? \Rightarrow No (GPAC \neq BSS)$
- Comparison with digital models of computation $? \Rightarrow How ?$
- What is a "reasonable" model ? ⇒ Unclear

General Purpose Analog Computer

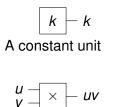
• by Claude Shanon (1941)

General Purpose Analog Computer

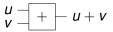
- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer

General Purpose Analog Computer

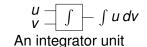
- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer
- circuit built from:



An multiplier unit



An adder unit



GPAC

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution y = (y_1, \ldots, y_d) of the Polynomial Initial Value Problem (PIVP):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector of polynomials.

GPAC

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution y = (y_1, \ldots, y_d) of the Polynomial Initial Value Problem (PIVP):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector of polynomials.

Remark

Other point of view: continuous dynamical system

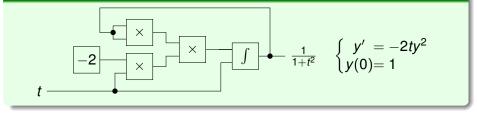
Example (One variable, linear system)

$$t \xrightarrow{f} e^t \begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

Example (One variable, linear system)

$$t \xrightarrow{f} e^t \quad \begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

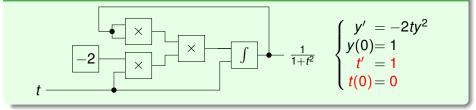
Example (One variable, nonlinear system)



Example (One variable, linear system)

$$t \xrightarrow{f} e^t \quad \begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

Example (Two variable, nonlinear system)



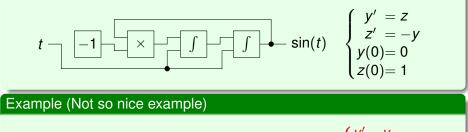
Example (Two variables, linear system)

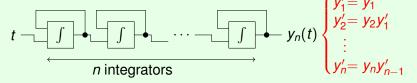
$$t - 1 + \frac{1}{2} + \frac{1}{2$$

GPAC

GPAC: examples

Example (Two variables, linear system)

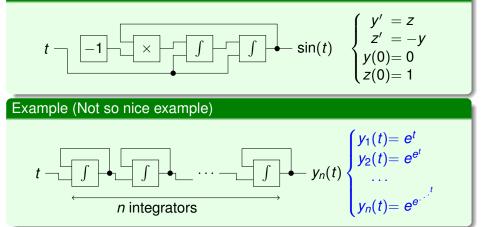


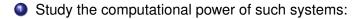


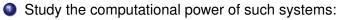
GPAC

GPAC: examples

Example (Two variables, linear system)

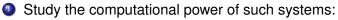




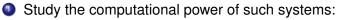


• (asymptotical) (properties of) solutions

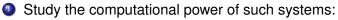
- (asymptotical) (properties of) solutions
- reachability properties



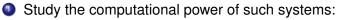
- (asymptotical) (properties of) solutions
- reachability properties
- attractors



- (asymptotical) (properties of) solutions
- reachability properties
- attractors
- Ise these systems as a model of computation



- (asymptotical) (properties of) solutions
- reachability properties
- attractors
- Ise these systems as a model of computation
 - on words



- (asymptotical) (properties of) solutions
- reachability properties
- attractors
- Ise these systems as a model of computation
 - on words
 - on real numbers

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Example

Rational numbers, π , e, ...

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Example

Rational numbers, π , e, ...

Example (Non-computable real)

$$r=\sum_{n=0}^{\infty}d_n2^{-n}$$

where

 $d_n = 1 \Leftrightarrow$ the n^{th} Turing Machine halts on input n

Computable function

Definition (Computable Function)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Computable function

Definition (Computable Function)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Equivalent)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute f(r).

Computable function

Definition (Computable Function)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Equivalent)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute f(r).

Example

Polynomials, trigonometric functions, e^{\cdot} , $\sqrt{\cdot}$, ...

Computable function

Definition (Computable Function)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Equivalent)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute f(r).

Example

Polynomials, trigonometric functions, e^{\cdot} , $\sqrt{\cdot}$, ...

Example (Counter-Example)

$$f(x) = \lceil x \rceil$$

Seems not:

Seems not:

Solutions of a GPAC are analytic

Seems not:

- Solutions of a GPAC are analytic
- $x \rightarrow |x|$ is computable but not analytic

Theorem (®)

Computable Analysis \neq General Purpose Analog Computer

Seems not:

- Solutions of a GPAC are analytic
- $x \rightarrow |x|$ is computable but not analytic

Theorem (🔊)

Computable Analysis \neq General Purpose Analog Computer

Can we fix this ?

GPAC: back to the basics

Definition

y is **generated** by a GPAC iff it is a component of the solution $y = (y_1, \ldots, y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector of polynomials

GPAC: back to the basics

Definition

y is **generated** by a GPAC iff it is a component of the solution $y = (y_1, \ldots, y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$
 where *p* is a vector of polynomials

Definition

f is **computable** by a GPAC iff for all $x \in \mathbb{R}$ the solution $y = (y_1, \ldots, y_d)$ of the ordinary differential equation (ODE):

 $\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$ where p,q is a vector of polynomials

satisfies for all $f(x) = \lim_{t\to\infty} y_1(t)$.

GPAC: back to the basics

Definition

f is **computable** by a GPAC iff for all $x \in \mathbb{R}$ the solution $y = (y_1, \ldots, y_d)$ of the ordinary differential equation (ODE):

 $\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$ where p,q is a vector of polynomials

satisfies for all
$$f(x) = \lim_{t\to\infty} y_1(t)$$
.

Example

Computable Analysis = GPAC ? (again)

Theorem (Bournez, Campagnolo, Graça, Hainry)

The GPAC-computable functions are exactly the computable functions of the Computable Analysis.

Computable Analysis = GPAC ? (again)

Theorem (Bournez, Campagnolo, Graça, Hainry)

The GPAC-computable functions are exactly the computable functions of the Computable Analysis.

Proof.

Any solution to a PIVP is computable + convergence

Computable Analysis = GPAC ? (again)

Theorem (Bournez, Campagnolo, Graça, Hainry)

The GPAC-computable functions are exactly the computable functions of the Computable Analysis.

Proof.

- Any solution to a PIVP is computable + convergence
- Simulate a Turing machine with a GPAC

What about complexity ?

What about complexity ?

Computable Analysis: nice complexity theory (from Turing Machines)

What about complexity ?

- Computable Analysis: nice complexity theory (from Turing Machines)
- General Purpose Analog Computer: nothing

What about complexity ?

- Computable Analysis: nice complexity theory (from Turing Machines)
- General Purpose Analog Computer: nothing

Conjecture

Computable Analysis = General Purpose Analog Computer, at the complexity level

What about complexity ?

- Computable Analysis: nice complexity theory (from Turing Machines)
- General Purpose Analog Computer: nothing

Conjecture

Computable Analysis = General Purpose Analog Computer, *at the complexity level*

First step: define a notion of complexity

What is the problem

Time Scaling

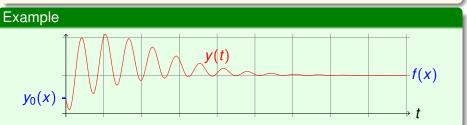
_

System	#1	#2
ODE	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = y_0 \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = y_0 \\ u(1) = 1 \end{cases}$

System	#1	#2
ODE	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = y_0 \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = y_0 \\ u(1) = 1 \end{cases}$

Remark

Same curve, different speed: $u(t) = e^t$ and $z(t) = y(e^t)$



Pouly, Bournez, Graça

System	#1	#2
ODE	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = y_0 \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = y_0 \\ u(1) = 1 \end{cases}$
Computed Function	$f(x) = \lim_{t \to \infty} y_1(t) = \lim_{t \to \infty} z_1(t)$	

Remark

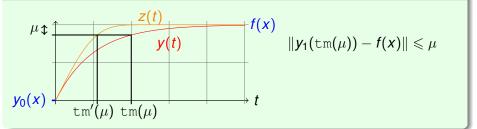
Same curve, different speed: $u(t) = e^t$ and $z(t) = y(e^t)$

System	#1	#2
ODE	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = y_0 \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = y_0 \\ u(1) = 1 \end{cases}$
Computed Function	$f(x) = \lim_{t \to \infty} y$	$\gamma_1(t) = \lim_{t \to \infty} z_1(t)$
Convergence	Eventually	Exponentially faster

Pouly, Bournez, Graça

ODE	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = y_0 \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = y_0 \\ u(1) = 1 \end{cases}$
Computed Function	$f(x) = \lim_{t \to \infty} y$	$v_1(t) = \lim_{t \to \infty} z_1(t)$
Convergence	Eventually	Exponentially faster
Time for precision μ	$ tm(\mu)$	$\texttt{tm}'(\mu) = \textsf{log}(\texttt{tm}(\mu))$

Example



ODE	y'=p(y)	$\left\{ egin{array}{l} z' = u p(z) \ u' = u \end{array} ight.$
Computed Function	$f(x) = \lim_{t \to \infty} y_1(t) = \lim_{t \to \infty} z_1(t)$	
Time for precision μ	$ tm(\mu)$	$\texttt{tm}'(\mu) = \textsf{log}(\texttt{tm}(\mu))$
Bounding box for ODE at time <i>t</i>	sp(t)	$sp'(t) = max(sp(e^t), e^t)$

Example $sp'(t) = \sup_{\xi \in [1,t]} \|y(\xi)\|$ $sp(t) = \sup_{\xi \in [1,t]} \|z(\xi), u(\xi)\|$ t

ODE	y' = p(y)	$\left\{ egin{array}{l} z' = u p(z) \ u' = u \end{array} ight.$
Computed Function	$f(x) = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$	$\overline{t_{t\to\infty}y_1(t)}=\lim_{t\to\infty}z_1(t)$
Time for precision μ	$ tm(\mu)$	$\texttt{tm}'(\mu) = \textsf{log}(\texttt{tm}(\mu))$
Bounding box for ODE at time t	sp(t)	$sp'(t) = \max(sp(e^t), e^t)$
Bounding box for ODE at precision μ	$\operatorname{sp}(\operatorname{tm}(\mu))$	$\max(sp(tm(\mu)),tm(\mu))$

Remark

- $tm(\mu)$ and sp(t) depend on the convergence rate
- sp(tm(µ)) seems not

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Possible choices:

• Bounding Box at precision $\mu \Rightarrow Ok$ but geometric interpretation ?

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Possible choices:

- Bounding Box at precision $\mu \Rightarrow Ok$ but geometric interpretation ?
- Length of the curve until precision $\mu \Rightarrow$ Much more intuitive

GPAC Computability (1)

Definition (GPAC-Computable Function)

 $f \in GCOMP(sp, tm)$ iff $\exists p, q$ polynomials, such that $\forall \alpha > 0, \forall ||x|| \leq \alpha$, $\exists y$ which satisfies:

• $\forall t \ge 0, y'(t) = p(y(t))$ and y(0) = q(x)

•
$$\forall \mu \geqslant \mathbf{0}, \forall t \geqslant \texttt{tm}(lpha, \mu), |f(x) - y_1(t)| \leqslant e^{-\mu}$$

• $\forall t \ge 0, \| \mathbf{y}(t) \| \le \operatorname{sp}(\alpha, t)$

GPAC Computability (1)

Definition (GPAC-Computable Function)

 $f \in GCOMP(sp, tm)$ iff $\exists p, q$ polynomials, such that $\forall \alpha > 0, \forall ||x|| \leq \alpha$, $\exists y$ which satisfies:

• $\forall t \ge 0, y'(t) = p(y(t))$ and y(0) = q(x)

•
$$\forall \mu \ge 0, \forall t \ge \operatorname{tm}(\alpha, \mu), |f(x) - y_1(t)| \leqslant e^{-\mu}$$

•
$$\forall t \ge 0, \| \mathbf{y}(t) \| \le \operatorname{sp}(\alpha, t)$$

GP = *GCOMP*(poly, poly)

GPAC Computability (1)

Definition (GPAC-Computable Function)

 $f \in GCOMP(sp, tm)$ iff $\exists p, q$ polynomials, such that $\forall \alpha > 0, \forall ||x|| \leq \alpha$, $\exists y$ which satisfies:

- $\forall t \ge 0, y'(t) = p(y(t))$ and y(0) = q(x)
- $\forall \mu \ge 0, \forall t \ge \operatorname{tm}(\alpha, \mu), |f(x) y_1(t)| \le e^{-\mu}$
- $\forall t \ge 0, \| \mathbf{y}(t) \| \le \operatorname{sp}(\alpha, t)$

GP = GCOMP(poly, poly)

Remark

• implies
$$f(x) = \lim_{t \to \infty} y_1(t)$$

- can be extended to multi-dimensional functions
- can be defined over arbitrary input domain

GPAC Computability (2)

Definition (Polytime GPAC-Computable Function (Alternative))

 $f \in GLEN(len)$ iff $\exists p, q$ polynomial such that $\forall \alpha > 0, \forall ||x|| \leq \alpha, \exists y$ which satisfies:

- $\forall t \ge 0, y'(t) = p(y(t))$ and y(0) = q(x)
- $\forall \mu \ge 0, \forall t \ge \ell^{-1}(\operatorname{len}(\alpha, \mu)), |f(x) y_1(t)| \le e^{-\mu}$
- $\ell(t)$ is the length of the curve y from 0 to t.

GPAC Computability (2)

Definition (Polytime GPAC-Computable Function (Alternative))

 $f \in GLEN(len)$ iff $\exists p, q$ polynomial such that $\forall \alpha > 0, \forall ||x|| \leq \alpha, \exists y$ which satisfies:

- $\forall t \ge 0, y'(t) = p(y(t))$ and y(0) = q(x)
- $\forall \mu \ge 0, \forall t \ge \ell^{-1}(\operatorname{len}(\alpha, \mu)), |f(x) y_1(t)| \le e^{-\mu}$
- $\ell(t)$ is the length of the curve y from 0 to t.

GPLEN = GLEN(poly)

GPAC Computability (2)

Definition (Polytime GPAC-Computable Function (Alternative))

 $f \in GLEN(len)$ iff $\exists p, q$ polynomial such that $\forall \alpha > 0, \forall ||x|| \leq \alpha, \exists y$ which satisfies:

- $\forall t \ge 0, y'(t) = p(y(t))$ and y(0) = q(x)
- $\forall \mu \ge 0, \forall t \ge \ell^{-1}(\operatorname{len}(\alpha, \mu)), |f(x) y_1(t)| \le e^{-\mu}$

• $\ell(t)$ is the length of the curve y from 0 to t.

Remark

- implies $f(x) = \lim_{t \to \infty} y_1(t)$
- length of a curve: $\ell(t) = \int_{t_0}^t \|p(y(u))\| du$
- $\ell^{-1}(I)$ = time to travel a length *I* on the curve *y*

Lemma (oversimplified)

GPLEN = GP

Lemma (oversimplified)

GPLEN = GP

Theorem

The polytime GPAC-computable functions (*GP*) are exactly the polytime computable functions of the Computable Analysis.

Computable Analysis = GPAC

Lemma (oversimplified)

GPLEN = GP

Theorem

The polytime GPAC-computable functions (*GP*) are exactly the polytime computable functions of the Computable Analysis.

Proof.

 Any solution to a PIVP is polytime computable + exponential convergence

Computable Analysis = GPAC

Lemma (oversimplified)

GPLEN = GP

Theorem

The polytime GPAC-computable functions (*GP*) are exactly the polytime computable functions of the Computable Analysis.

Proof.

- Any solution to a PIVP is polytime computable + exponential convergence
- Simulate a Turing machine with a GPAC

Theorem

If $y(0) = y_0$ and y' = p(y) Then $y(t) \pm e^{-\mu}$ is computable is time

Theorem

If
$$y(0) = y_0$$
 and $y' = p(y)$ Then $y(t) \pm e^{-\mu}$ is computable is time

$$\mathsf{poly}(\mathsf{deg}(p), \mathcal{L}(t), \mathsf{log} \| y_0 \|, \mathsf{log} \Sigma p, \mu)^d$$

where

$$L(t) = \int_0^t \Sigma p \max(1, \|y(u)\|)^{\deg(p)} du \approx \text{length of } y \text{ over } [0, t]$$

Theorem

If
$$y(0) = y_0$$
 and $y' = p(y)$ Then $y(t) \pm e^{-\mu}$ is computable is time

$$\mathsf{poly}(\mathsf{deg}(p), \mathcal{L}(t), \mathsf{log} \| y_0 \|, \mathsf{log} \Sigma p, \mu)^d$$

where

$$L(t) = \int_0^t \Sigma p \max(1, \|y(u)\|)^{\deg(p)} du \approx \text{length of } y \text{ over } [0, t]$$

Remark

For L(t) = poly(t), it shows that y is polytime computable in the sense of Computable Analysis (nonuniformly).

Theorem

If
$$y(0) = y_0$$
 and $y' = p(y)$ Then $y(t) \pm e^{-\mu}$ is computable is time

$$\mathsf{poly}(\mathsf{deg}(p), \mathcal{L}(t), \mathsf{log} \| y_0 \|, \mathsf{log} \Sigma p, \mu)^d$$

where

$$L(t) = \int_0^t \Sigma p \max(1, \|y(u)\|)^{\deg(p)} du \approx \text{length of } y \text{ over } [0, t]$$

Remark

For L(t) = poly(t), it shows that y is polytime computable in the sense of Computable Analysis (nonuniformly).

Proof.

Numerical analysis, for another talk ?

Pouly, Bournez, Graça

Simulating a Turing Machine with PIVP directly is tricky, we need more tools.

Simulating a Turing Machine with PIVP directly is tricky, we need more tools.

Definition (Function Algebra)

A *function algebra* $[\mathcal{F}; OP]$ is the smallest set of functions containg \mathcal{F} and stable by all operators in OP.

Simulating a Turing Machine with PIVP directly is tricky, we need more tools.

Definition (Function Algebra)

A *function algebra* $[\mathcal{F}; OP]$ is the smallest set of functions containg \mathcal{F} and stable by all operators in OP.

Example

•
$$\mathbb{R}[X] = [0, -1, 1, X; +, \times]$$

- primitive recursive=[0, S, π_i; ∘, REC]
- recursive=[0, S, π_i; ∘, REC, MU]

Theorem

 $\textit{GP} = [\textit{GP};\textit{LIM}, \circ,\textit{IT}]$

Theorem

$$\textit{GP} = [\textit{GP};\textit{LIM}, \circ,\textit{IT}]$$

• $LIM(f) = x \mapsto \lim_{\omega \to \infty} f(x, \omega)$ + exponential convergence hypothesis

Theorem

$$\textit{GP} = [\textit{GP};\textit{LIM}, \circ,\textit{IT}]$$

- $LIM(f) = x \mapsto \lim_{\omega \to \infty} f(x, \omega)$ + exponential convergence hypothesis
- *IT*(*f*) = (*x*, *n*) → *f*^[*n*](*x*) + polynomial modulus of continuity hypothesis

Theorem

$$GP = [GP; LIM, \circ, IT]$$

- $LIM(f) = x \mapsto \lim_{\omega \to \infty} f(x, \omega)$ + exponential convergence hypothesis
- *IT*(*f*) = (*x*, *n*) → *f*^[*n*](*x*) + polynomial modulus of continuity hypothesis

Proof.

Very technical

 $f: \mathbb{R} \to \mathbb{R}$ polytime computable, \mathcal{M} Turing Machine for $f, s_{\mathcal{M}}$ one step of \mathcal{M}

$$f(x) = \lim_{\mu \to \infty} \mathcal{M}(x, \mu)$$

= $\lim_{\mu \to \infty} \lim_{n \to \infty} s_{\mathcal{M}}^{[n]}(x, \mu)$

and $s_{\mathcal{M}}$ can be built using composition and *GP*.

$\bullet\,$ GPAC as computable real function \rightarrow Computable Analysis

- GPAC as computable real function \rightarrow Computable Analysis
- GPAC as language recogniser \rightarrow classical computability ?

- GPAC as computable real function \rightarrow Computable Analysis
- GPAC as language recogniser \rightarrow classical computability ?

Remark

• words \approx integers \subseteq real numbers

- GPAC as computable real function \rightarrow Computable Analysis
- GPAC as language recogniser \rightarrow classical computability ?

Remark

- words ≈ integers ⊆ real numbers
- decide \approx { Yes, No} \approx {0, 1} \subseteq real numbers

- GPAC as computable real function \rightarrow Computable Analysis
- GPAC as language recogniser \rightarrow classical computability ?

Remark

- words ≈ integers ⊆ real numbers
- decide \approx { Yes, No} \approx {0, 1} \subseteq real numbers
- language recogniser: special case of real function ? $f: \mathbb{N} \subseteq \mathbb{R} \to \{0, 1\} \subseteq \mathbb{R}$

- GPAC as computable real function \rightarrow Computable Analysis
- GPAC as language recogniser \rightarrow classical computability ?

Remark

- words ≈ integers ⊆ real numbers
- decide \approx { Yes, No} \approx {0, 1} \subseteq real numbers
- language recogniser: special case of real function ? $f: \mathbb{N} \subseteq \mathbb{R} \to \{0, 1\} \subseteq \mathbb{R}$
- Yes but there is more !

Definition (GPAC-Recognisable Language)

 $\mathcal{L} \subseteq \mathbb{N}$ GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

 $\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$ where *p*,*q* are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

Definition (GPAC-Recognisable Language)

 $\mathcal{L} \subseteq \mathbb{N}$ GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

 $\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$ where *p*,*q* are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

Theorem

The GPAC-recognisable languages are exactly the recursive languages.

Definition (GPAC-Recognisable Language)

 $\mathcal{L} \subseteq \mathbb{N}$ GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

 $\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$ where p,q are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

Theorem

The GPAC-recognisable languages are exactly the recursive languages.

Remark

What about complexity ?

 $\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

 $\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$ where p,q are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leq -1$ (reject)

 $\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

 $\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$ where p,q are vectors of polynomials

satisfies for $t \ge t_1(x)$:

• if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ (accept)

• if $x \notin \mathcal{L}$ then $y_1(t) \leq -1$ (reject)

where $t_1(x) = \ell^{-1}(\text{len}(\log(x)))$ where $\ell(t)$ is the length of y from t_0 to t and len a polynomial.

 $\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

 $\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$ where p,q are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leqslant -1$ (reject)

where $t_1(x) = \ell^{-1}(\operatorname{len}(\log(x)))$ where $\ell(t)$ is the length of y from t_0 to t and len a polynomial.

Theorem

The class of polytime GPAC-recognisable languages is exactly P.

 $\mathcal{L} \subseteq \mathbb{N}$ poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution y to

 $\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$ where p,q are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ (accept)
- if $x \notin \mathcal{L}$ then $y_1(t) \leq -1$ (reject)

where $t_1(x) = \ell^{-1}(\text{len}(\log(x)))$ where $\ell(t)$ is the length of y from t_0 to t and len a polynomial.

Theorem

The class of polytime GPAC-recognisable languages is exactly P.

Remark (Why log(x) ?)

Classical complexity measure: length of word \approx log of value

Pouly, Bournez, Graça

Computational Complexity of the GPAC

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

 $\mathcal{L} \subseteq \mathbb{N}$ non-deterministic poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution *y* to

 $\begin{cases} y' = p(y, u) \\ y(t_0) = q(x) \end{cases}$ where *p*,*q* are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ for at least one digital controller u
- if $x \notin \mathcal{L}$ then $y_1(t) \leq -1$ for all digital controller u

where $t_1(x) = \ell^{-1}(\operatorname{len}(\log(x)))$ and $\operatorname{len} a$ polynomial.

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

 $\mathcal{L} \subseteq \mathbb{N}$ non-deterministic poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution *y* to

 $\begin{cases} y' = p(y, u) \\ y(t_0) = q(x) \end{cases}$ where *p*,*q* are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ for at least one digital controller u
- if $x \notin \mathcal{L}$ then $y_1(t) \leq -1$ for all digital controller u

where $t_1(x) = \ell^{-1}(\operatorname{len}(\log(x)))$ and $\operatorname{len} a$ polynomial.

Remark (Digital Controller)

Digital Controller $\approx \boldsymbol{u} : \mathbb{R} \to \{0, 1\}$

Definition (Non-deterministic Polytime GPAC-Recognisable Language)

 $\mathcal{L} \subseteq \mathbb{N}$ non-deterministic poyltime GPAC-recognisable if for any $x \in \mathbb{N}$, the solution *y* to

 $\begin{cases} y' = p(y, u) \\ y(t_0) = q(x) \end{cases}$ where *p*,*q* are vectors of polynomials

satisfies for $t \ge t_1(x)$:

- if $x \in \mathcal{L}$ then $y_1(t) \ge 1$ for at least one digital controller u
- if $x \notin \mathcal{L}$ then $y_1(t) \leq -1$ for all digital controller u

where $t_1(x) = \ell^{-1}(\operatorname{len}(\log(x)))$ and $\operatorname{len} a$ polynomial.

Remark (Digital Controller)

Digital Controller $\approx u : \mathbb{R} \to \{0, 1\}$

Theorem

The class of non-deterministic polytime GPAC-recognisable languages is exactly *NP*.

Pouly, Bournez, Graça

Conclusion

• Complexity theory for the GPAC

Conclusion

- Complexity theory for the GPAC
- Equivalence with Computable Analysis for polynomial time

Future Work

• Notion of reduction ?

Future Work

- Notion of reduction ?
- Space complexity ?

• Do you have any questions ?