## Constraint information inequalities: geometric, algorithmic and combinatorial views

## Andrei Romashchenko (LIRMM)

a joint work with
T. Kaced (Hong Kong) and N. Vereshchagin (Moscow)

Journées Calculabilités, Montpellier

April 292014

## Outline

(1) Shannon entropy: basic definitions
(2) "Standard" information inequalities
(3 "Conditional" information inequalities
(4) Conditional inequalities: geometric view
(5) Information inequalities for Kolmogorov complexity
(6) Towards combinatorial interpretation

## Outline

(1) Shannon entropy: basic definitions

2 "Standard" information inequalities
(3) "Conditional" information inequalities
(1) Conditional inequalities: geometric view
(5) Information inequalities for Kolmogorov complexity
© Towards combinatorial interpretation

## Shannon's entropy, the basic definition

## Shannon's entropy, the basic definition

 random variable $\alpha$ :
## Shannon's entropy, the basic definition

 random variable $\alpha: \operatorname{Prob}\left[\alpha=s_{i}\right]=p_{i}$
## Shannon's entropy, the basic definition

 random variable $\alpha: \operatorname{Prob}\left[\alpha=s_{i}\right]=p_{i}$distribution: | $s_{1}$ | $s_{2}$ | $\ldots$ | $s_{k}$ |
| :--- | :--- | :--- | :--- |
| $p_{1}$ | $p_{2}$ | $\ldots$ | $p_{k}$ |,$p_{i} \geq 0, \quad \sum p_{i}=1$

## Shannon's entropy, the basic definition

 random variable $\alpha: \operatorname{Prob}\left[\alpha=s_{i}\right]=p_{i}$distribution: | $s_{1}$ | $s_{2}$ | $\ldots$ | $s_{k}$ |
| :--- | :--- | :--- | :--- |
| $p_{1}$ | $p_{2}$ | $\ldots$ | $p_{k}$ |,$\quad p_{i} \geq 0, \quad \sum p_{i}=1$

Definition: $H(\alpha):=\sum_{i} p_{i} \log \frac{1}{p_{i}}$

## Shannon's entropy, the basic definition

 random variable $\alpha: \operatorname{Prob}\left[\alpha=s_{i}\right]=p_{i}$distribution: | $s_{1}$ | $s_{2}$ | $\ldots$ | $s_{k}$ |
| :--- | :--- | :--- | :--- |
| $p_{1}$ | $p_{2}$ | $\ldots$ | $p_{k}$ |,$p_{i} \geq 0, \quad \sum p_{i}=1$

Definition: $H(\alpha):=\sum_{i} p_{i} \log \frac{1}{p_{i}}$
Measure of uncertainty in $\alpha: 0 \leq H(\alpha) \leq \log k$

## Shannon's entropy, more notation

## Shannon's entropy, more notation random variables $\alpha, \beta$

## Shannon's entropy, more notation random variables $\alpha, \beta$

 distribution: $\operatorname{Prob}\left[\alpha=s_{i} \& \beta=t_{j}\right]=p_{i j}$
## Shannon's entropy, more notation

 random variables $\alpha, \beta$distribution: $\operatorname{Prob}\left[\alpha=s_{i} \& \beta=t_{j}\right]=p_{i j}$
Principle entropy quantities: $H(\alpha), H(\beta), H(\alpha, \beta)$.

## Shannon's entropy, more notation

 random variables $\alpha, \beta$distribution: $\operatorname{Prob}\left[\alpha=s_{i} \& \beta=t_{j}\right]=p_{i j}$
Principle entropy quantities: $H(\alpha), H(\beta), H(\alpha, \beta)$.
Conditions entropies:

$$
\begin{aligned}
& H(\alpha \mid \beta)=H(\alpha, \beta)-H(\beta) \\
& H(\beta \mid \alpha)=H(\alpha, \beta)-H(\alpha)
\end{aligned}
$$

## Shannon's entropy, more notation

 random variables $\alpha, \beta$distribution: $\operatorname{Prob}\left[\alpha=s_{i} \& \beta=t_{j}\right]=p_{i j}$
Principle entropy quantities: $H(\alpha), H(\beta), H(\alpha, \beta)$.
Conditions entropies:

$$
\begin{aligned}
& H(\alpha \mid \beta)=H(\alpha, \beta)-H(\beta), \\
& H(\beta \mid \alpha)=H(\alpha, \beta)-H(\alpha) .
\end{aligned}
$$

Mutual information:

$$
I(\alpha: \beta)=H(\alpha)+H(\beta)-H(\alpha, \beta)
$$

## Shannon's entropy, more notation

 random variables $\alpha, \beta$distribution: $\operatorname{Prob}\left[\alpha=s_{i} \& \beta=t_{j}\right]=p_{i j}$
Principle entropy quantities: $H(\alpha), H(\beta), H(\alpha, \beta)$.
Conditions entropies:

$$
\begin{aligned}
& H(\alpha \mid \beta)=H(\alpha, \beta)-H(\beta), \\
& H(\beta \mid \alpha)=H(\alpha, \beta)-H(\alpha) .
\end{aligned}
$$

Mutual information:

$$
\begin{aligned}
I(\alpha: \beta) & =H(\alpha)+H(\beta)-H(\alpha, \beta) \\
& =H(\alpha)-H(\alpha \mid \beta)
\end{aligned}
$$

## Shannon's entropy, more notation

 random variables $\alpha, \beta$distribution: $\operatorname{Prob}\left[\alpha=s_{i} \& \beta=t_{j}\right]=p_{i j}$
Principle entropy quantities: $H(\alpha), H(\beta), H(\alpha, \beta)$.
Conditions entropies:

$$
\begin{aligned}
& H(\alpha \mid \beta)=H(\alpha, \beta)-H(\beta), \\
& H(\beta \mid \alpha)=H(\alpha, \beta)-H(\alpha) .
\end{aligned}
$$

Mutual information:

$$
\begin{aligned}
I(\alpha: \beta) & =H(\alpha)+H(\beta)-H(\alpha, \beta) \\
& =H(\alpha)-H(\alpha \mid \beta) \\
& =H(\beta)-H(\beta \mid \alpha)
\end{aligned}
$$

## Outline

(1) Shannon entropy: basic definitions

## (2) "Standard" information inequalities

(3) "Conditional" information inequalities
(4) Conditional inequalities: geometric view
(3) Information inequalities for Kolmogorov complexity
(6) Towards combinatorial interpretation

## Linear information inequalities

## Linear information inequalities

Basic inequalities:

$$
H(a, b) \leq H(a)+H(b)
$$

$$
[/(a: b) \geq 0]
$$

## Linear information inequalities

Basic inequalities:

$$
\begin{array}{ll}
H(a, b) \leq H(a)+H(b) & {[/(a: b) \geq 0]} \\
H(a, b, c)+H(c) \leq H(a, c)+H(b, c) & {[/(a: b \mid c) \geq 0]}
\end{array}
$$

## Linear information inequalities

Basic inequalities:

$$
\begin{array}{ll}
H(a, b) \leq H(a)+H(b) & {[/(a: b) \geq 0]} \\
H(a, b, c)+H(c) \leq H(a, c)+H(b, c) & {[/(a: b \mid c) \geq 0]}
\end{array}
$$

[Shannon type ineq] $==$ [combinations of basic ineq]: example 1: $H(a) \leq H(a \mid b)+H(a \mid c)+I(b: c)$ example 2: $2 H(a, b, c) \leq H(a, b)+H(a, c)+H(b, c)$

## Linear information inequalities

General form: A linear information inequality is a combination of reals $\left\{\lambda_{i_{1}, \ldots, i_{k}}\right\}$ such that

$$
\sum \lambda_{i_{1}, \ldots, i_{k}} H\left(a_{i_{1}}, \ldots, a_{i_{k}}\right) \geq 0
$$

for all $\left(a_{1}, \ldots, a_{n}\right)$.

## Linear information inequalities

General form: A linear information inequality is a combination of reals $\left\{\lambda_{i_{1}, \ldots, i_{k}}\right\}$ such that

$$
\sum \lambda_{i_{1}, \ldots, i_{k}} H\left(a_{i_{1}}, \ldots, a_{i_{k}}\right) \geq 0
$$

for all $\left(a_{1}, \ldots, a_{n}\right)$.
Applications:

- multi-source network coding
- secret sharing
- combinatorial interpretations
- group theoretical interpretation
- Kolmogorov complexity

Once again, Shannon type information inequalities:

- subadditivity,
$H(A \cup B) \leq H(A)+H(B)$
[in other notation $I(A: B) \geq 0$ ]
- submodularity,
$H(A \cup B \cup C)+H(C) \leq H(A \cup C)+H(B \cup C)$
[in other notation $I(A: B \mid C) \geq 0$ ]
- linear combinations of basic inequalities

Once again, Shannon type information inequalities:

- subadditivity,
$H(A \cup B) \leq H(A)+H(B)$
[in other notation $/(A: B) \geq 0$ ]
- submodularity,
$H(A \cup B \cup C)+H(C) \leq H(A \cup C)+H(B \cup C)$
[in other notation $I(A: B \mid C) \geq 0$ ]
- linear combinations of basic inequalities

Th [Z. Zhang, R.W. Yeung 1998] There exists a non-Shannon type information inequality:

$$
\begin{aligned}
I(c: d) \leq & 2 I(c: d \mid a)+I(c: d \mid b)+I(a: b) \\
& +I(a: c \mid d)+I(a: d \mid c)
\end{aligned}
$$

Theorem [Z. Zhang, R.W. Yeung 1997] There exists a conditional non Shannon type inequality:

$$
I(x: y)=I(x: y \mid a)=0
$$

$$
\Downarrow
$$

$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)
$$

## Outline

(1) Shannon entropy: basic definitions
© "Standard" information inequalities
(3) "Conditional" information inequalities
(4) Conditional inequalities: geometric view
(5) Information inequalities for Kolmogorov complexity
© Towards combinatorial interpretation

## Conditional information inequalities

(a) Trivial, Shannon-type:
if $I(x: y)=0$ then $H(a) \leq H(a \mid x)+H(a \mid y)$

## Conditional information inequalities

(a) Trivial, Shannon-type:
if $I(x: y)=0$ then $H(a) \leq H(a \mid x)+H(a \mid y)$
this is true since $H(a) \leq H(a \mid x)+H(a \mid y)+I(x: y)$
[Shannon-type unconditional inequalitiy]

## Conditional information inequalities

## (b) Trivial, non Shannon-type:

if $I(a: b \mid z)=I(a: z \mid b)=I(b: z \mid a)=0$ then

$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

## Conditional information inequalities

(b) Trivial, non Shannon-type:
if $I(a: b \mid z)=I(a: z \mid b)=I(b: z \mid a)=0$ then

$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

this is true since

$$
\begin{aligned}
I(a: b) \leq & I(a: b \mid x)+I(a: b \mid y)+I(x: y) \\
& +I(a: b \mid z)+I(a: z \mid b)+I(b: z \mid a)
\end{aligned}
$$

[non Shannon-type unconditional inequalitiy]

## Conditional information inequalities

(c) Non trivial, non Shannon-type:

- Zhang, Yeung 97: if $I(x: y)=I(x: y \mid a)=0$ then

$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

## Conditional information inequalities

(c) Non trivial, non Shannon-type:

- Zhang, Yeung 97: if $I(x: y)=I(x: y \mid a)=0$ then

$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

- F. Matús 99: if $I(x: a \mid b)=I(x: b \mid a)=0$ then

$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

## Conditional information inequalities

(c) Non trivial, non Shannon-type:

- Zhang,Yeung 97: if $I(x: y)=I(x: y \mid a)=0$ then

$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

- F. Matús 99: if $I(x: a \mid b)=I(x: b \mid a)=0$ then

$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

- Tarik Kaced and A.R. 2011: if $H(a \mid x, y)=I(x: y \mid a)=0$ then

$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

## $\underbrace{I(x: y)=I(x: y \mid a)=0}_{\text {[Zhang-Yeung'97] }} \underbrace{I(x: a \mid b)=I(x: b \mid a)=0}_{[\text {Matúś'99] }} \underbrace{H(a \mid x, y)=I(x: y \mid a)=0}_{\text {[T.Kaced and A.R.'11] }}$

$\searrow$


$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

$$
\underbrace{I(x: y)=I(x: y \mid a)=0}_{[\text {Zhang-Yeung'97] }} \underbrace{I(x: a \mid b)=I(x: b \mid a)=0}_{[\text {Matúś'99] }} \underbrace{H(a \mid x, y)=I(x: y \mid a)=0}_{[\text {T.Kaced and A.R.'11] }}
$$



Theorem. These three statements are essentially conditional inequalities.

Theorem The inequality

$$
H(a \mid x, y)=I(x: y \mid a)=0 \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

is essentially conditional.

Theorem The inequality

$$
H(a \mid x, y)=I(x: y \mid a)=0 \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

is essentially conditional.
We cannot reduce it to an unconditional inequality!

Theorem The inequality

$$
H(a \mid x, y)=I(x: y \mid a)=0 \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

is essentially conditional.
We cannot reduce it to an unconditional inequality!
That is, for all $\lambda_{1}, \lambda_{2}$ the inequality

$$
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+\lambda_{1} H(a \mid x, y)+\lambda_{2} I(x: y \mid a)
$$

does not hold.

Theorem The inequality

$$
H(a \mid x, y)=I(x: y \mid a)=0 \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
$$

is essentially conditional.
We cannot reduce it to an unconditional inequality!
More precisely, for all $\lambda_{1}, \lambda_{2}$ there exist $(a, b, c, d)$ such that

$$
I(a: b) \not \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+\lambda_{1} H(a \mid x, y)+\lambda_{2} I(x: y \mid a)
$$

Claim: For any $\lambda_{1}, \lambda_{2}$ there exist $(a, b, c, d)$ such that

$$
I(a: b) \not \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+\lambda_{1} H(a \mid x, y)+\lambda_{2} I(x: y \mid a)
$$

Claim: For any $\lambda_{1}, \lambda_{2}$ there exist $(a, b, c, d)$ such that

$$
I(a: b) \not \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+\lambda_{1} H(a \mid x, y)+\lambda_{2} I(x: y \mid a)
$$

Proof : a family of counter-examples

Claim: For any $\lambda_{1}, \lambda_{2}$ there exist ( $a, b, c, d$ ) such that

$$
I(a: b) \not \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+\lambda_{1} H(a \mid x, y)+\lambda_{2} I(x: y \mid a)
$$

Proof : a family of counter-examples

- fix a finite field $\mathbb{F}$
- $a$ is a random line (a polynomial of degree 1 over $\mathbb{F}$ )

Claim: For any $\lambda_{1}, \lambda_{2}$ there exist ( $a, b, c, d$ ) such that

$$
I(a: b) \not \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+\lambda_{1} H(a \mid x, y)+\lambda_{2} I(x: y \mid a)
$$

Proof : a family of counter-examples

- fix a finite field $\mathbb{F}$
- $a$ is a random line (a polynomial of degree 1 over $\mathbb{F}$ )
- $x$ and $y$ are two different points in this line

Claim: For any $\lambda_{1}, \lambda_{2}$ there exist ( $a, b, c, d$ ) such that

$$
I(a: b) \not \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+\lambda_{1} H(a \mid x, y)+\lambda_{2} I(x: y \mid a)
$$

Proof : a family of counter-examples

- fix a finite field $\mathbb{F}$
- $a$ is a random line (a polynomial of degree 1 over $\mathbb{F}$ )
- $x$ and $y$ are two different points in this line
- $b$ is a parabola (a polynomial of degree 2) that intersects $a$ at $x$ and $y$

Claim: For any $\lambda_{1}, \lambda_{2}$ there exist ( $a, b, c, d$ ) such that

$$
I(a: b) \not \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+\lambda_{1} H(a \mid x, y)+\lambda_{2} I(x: y \mid a)
$$

Proof: a family of counter-examples

- fix a finite field $\mathbb{F}$
- $a$ is a random line (a polynomial of degree 1 over $\mathbb{F}$ )
- $x$ and $y$ are two different points in this line
- $b$ is a parabola (a polynomial of degree 2) that intersects $a$ at $x$ and $y$

| $I(a: b)$ | $\&$ | $I(a: b \mid x)$ | + | $I(a: b \mid y)$ | + | $I(x: y)$ | + | $\lambda_{\mathbf{1}} H(a \mid x, y)$ | + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\\|$ |  | $\\|$ | $\\|$ | $\\|$ | $\lambda_{\mathbf{2}} I(x: y \mid a)$ |  |  |  |  |
| $1+o(1)$ | $\&$ | $o(1)$ | + | $o(1)$ | + | $o(1)$ | + | 0 | $\\|$ |

## Outline

(1) Shannon entropy: basic definitions
(4) Conditional inequalities: geometric view
(5) Information inequalities for Kolmogorov complexity
(6) Towards combinatorial interpretation

## A geometric view on conditional inequalities:


if $y=0$ then $x \leq 1$

## A geometric view on conditional inequalities:


if $y=0$ then $x \leq 1 \Longleftarrow x \leq 1+y$

## A geometric view on conditional inequalities:


if $y=0$ then $x \leq 1 \Longleftarrow x \leq 1+y$
NOT essentially conditional

## A geometric view on conditional inequalities:



## A geometric view on conditional inequalities:


if $y=0$ then $x \leq 1 \Longleftarrow$ from an infinite family of linear inequalities

## A geometric view on conditional inequalities:


if $y=0$ then $x \leq 1 \Longleftarrow$ from an infinite family of linear inequalities
NO unconditional inequality $x \leq 1+\lambda y$

## A geometric view on conditional inequalities:


if $y=0$ then $x \leq 1 \Longleftarrow$ from an infinite family of linear inequalities
NO unconditional inequality $x \leq 1+\lambda y$
this inequality is essentially conditional

## A geometric view on conditional inequalities:



## A geometric view on conditional inequalities:

## A geometric view on conditional inequalities:


if $y=0$ then $x \leq 1 \Longleftarrow$ from a complex structure of the borderline
NO unconditional inequality $x \leq 1+\lambda y$

## A geometric view on conditional inequalities:


if $y=0$ then $x \leq 1 \Longleftarrow$ from a complex structure of the borderline
NO unconditional inequality $x \leq 1+\lambda y$
this inequality is also essentially conditional

## Outline

(1) Shannon entropy: basic definitions
© "Standard" information inequalities
(3) "Conditional" information inequalities
(C) Conditional inequalities: geometric view
(5) Information inequalities for Kolmogorov complexity
(6) Towards combinatorial interpretation

## Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon's entropy and for Kolmogorov complexity.


## Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon's entropy and for Kolmogorov complexity.

$$
\text { e.g. } H\left(a_{1}, a_{2}\right) \leq H\left(a_{1}\right)+H\left(a_{2}\right) \text { vs } C\left(a_{1}, a_{2}\right) \leq C\left(a_{1}\right)+C\left(a_{2}\right)+O(\log N)
$$

## Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon's entropy and for Kolmogorov complexity.

```
e.g. H(a1, a}\mp@code{2})\leqH(\mp@subsup{a}{1}{})+H(\mp@subsup{a}{2}{})\mathrm{ vs }C(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})\leqC(\mp@subsup{a}{1}{})+C(\mp@subsup{a}{2}{})+O(\operatorname{log}N
the general scheme: }\mp@subsup{\lambda}{1}{}H(\mp@subsup{a}{1}{})+\mp@subsup{\lambda}{2}{}H(\mp@subsup{a}{2}{})+\ldots+\mp@subsup{\lambda}{12}{}H(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})+\ldots\geq
```

                                    is equivalent to
    $$
\lambda_{1} C\left(a_{1}\right)+\lambda_{2} C\left(a_{2}\right)+\ldots+\lambda_{12} C\left(a_{1}, a_{2}\right)+\ldots+O(\log N) \geq 0
$$

## Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon's entropy and for Kolmogorov complexity.

```
e.g. H(a, , a})\leqH(\mp@subsup{a}{1}{})+H(\mp@subsup{a}{2}{})\mathrm{ vs }C(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})\leqC(\mp@subsup{a}{1}{})+C(\mp@subsup{a}{2}{})+O(\operatorname{log}N
the general scheme: }\mp@subsup{\lambda}{1}{}H(\mp@subsup{a}{1}{})+\mp@subsup{\lambda}{2}{}H(\mp@subsup{a}{2}{})+\ldots+\mp@subsup{\lambda}{12}{}H(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})+\ldots\geq
```

is equivalent to

$$
\lambda_{1} C\left(a_{1}\right)+\lambda_{2} C\left(a_{2}\right)+\ldots+\lambda_{12} C\left(a_{1}, a_{2}\right)+\ldots+O(\log N) \geq 0
$$

- Essentially conditional inequality [Matúš'99] is valid for Kolmogorov complexity (in some sense).


## Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon's entropy and for Kolmogorov complexity.

```
e.g. H(a, , a})\leqH(\mp@subsup{a}{1}{})+H(\mp@subsup{a}{2}{})\mathrm{ vs }C(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})\leqC(\mp@subsup{a}{1}{})+C(\mp@subsup{a}{2}{})+O(\operatorname{log}N
the general scheme: }\mp@subsup{\lambda}{1}{}H(\mp@subsup{a}{1}{})+\mp@subsup{\lambda}{2}{}H(\mp@subsup{a}{2}{})+\ldots+\mp@subsup{\lambda}{12}{}H(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})+\ldots\geq
```

is equivalent to

$$
\lambda_{1} C\left(a_{1}\right)+\lambda_{2} C\left(a_{2}\right)+\ldots+\lambda_{12} C\left(a_{1}, a_{2}\right)+\ldots+O(\log N) \geq 0
$$

- Essentially conditional inequality [Matúš'09] is valid for Kolmogorov complexity (in some sense).

$$
I(x: a \mid b) \leq \sqrt{N} \& I(x: b \mid a) \leq \sqrt{N} \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+O\left(N^{3 / 4}\right)
$$

## Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon's entropy and for Kolmogorov complexity.

```
e.g. H(a, , a}\mp@code{2})\leqH(\mp@subsup{a}{1}{})+H(\mp@subsup{a}{2}{})\mathrm{ vs }C(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})\leqC(\mp@subsup{a}{1}{})+C(\mp@subsup{a}{2}{})+O(\operatorname{log}N
the general scheme: }\mp@subsup{\lambda}{1}{}H(\mp@subsup{a}{1}{})+\mp@subsup{\lambda}{2}{}H(\mp@subsup{a}{2}{})+\ldots+\mp@subsup{\lambda}{12}{}H(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})+\ldots\geq
```

is equivalent to

$$
\lambda_{1} C\left(a_{1}\right)+\lambda_{2} C\left(a_{2}\right)+\ldots+\lambda_{12} C\left(a_{1}, a_{2}\right)+\ldots+O(\log N) \geq 0
$$

- Essentially conditional inequality [Matúš'09] is valid for Kolmogorov complexity (in some sense).
$I(x: a \mid b) \leq \sqrt{N} \& I(x: b \mid a) \leq \sqrt{N} \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+O\left(N^{3 / 4}\right)$
- Essentially conditional inequalities [Zhang-Yeung'97] and [Kaced-R.'11] are not for Kolmogorov complexity


## Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon's entropy and for Kolmogorov complexity.

```
e.g. H(a, , a})\leqH(\mp@subsup{a}{1}{})+H(\mp@subsup{a}{2}{})\mathrm{ vs }C(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})\leqC(\mp@subsup{a}{1}{})+C(\mp@subsup{a}{2}{})+O(\operatorname{log}N
the general scheme: }\mp@subsup{\lambda}{1}{}H(\mp@subsup{a}{1}{})+\mp@subsup{\lambda}{2}{}H(\mp@subsup{a}{2}{})+\ldots+\mp@subsup{\lambda}{12}{}H(\mp@subsup{a}{1}{},\mp@subsup{a}{2}{})+\ldots\geq
```

is equivalent to

$$
\lambda_{1} C\left(a_{1}\right)+\lambda_{2} C\left(a_{2}\right)+\ldots+\lambda_{12} C\left(a_{1}, a_{2}\right)+\ldots+O(\log N) \geq 0
$$

- Essentially conditional inequality [Matúš'09] is valid for Kolmogorov complexity (in some sense).
$I(x: a \mid b) \leq \sqrt{N} \& I(x: b \mid a) \leq \sqrt{N} \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)+O\left(N^{3 / 4}\right)$
- Essentially conditional inequalities [Zhang-Yeung'97] and [Kaced-R.'11] are not for Kolmogorov complexity (in any reasonable sense)


## Outline

(1) Shannon entropy: basic definitions
(6) Towards combinatorial interpretation

Once again,
Theorem: $H(a \mid x, y)=I(x: y \mid a)=0 \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)$

Once again,
Theorem: $H(a \mid x, y)=I(x: y \mid a)=0 \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)$

Why is it valid?

Once again,
Theorem: $H(a \mid x, y)=I(x: y \mid a)=0 \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)$
Why is it valid? And what does it mean?

Once again,
Theorem: $H(a \mid x, y)=I(x: y \mid a)=0 \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)$
Why is it valid? And what does it mean?
We relax the constraint and make the inequality stronger:
(1) $a$ is a function of $(x, y)$
(2) $\operatorname{Pr}\left[X_{i} \mid A_{k}\right]>0 \& \operatorname{Pr}\left[Y_{j} \mid A_{k}\right]>0 \Rightarrow \operatorname{Pr}\left[X_{i}, Y_{j} \mid A_{k}\right]>0$

Theorem:

$$
(1)+(2) \quad \Longrightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)
$$

Once again,
Theorem: $H(a \mid x, y)=I(x: y \mid a)=0 \Rightarrow I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)$
Why is it valid? And what does it mean?
We relax the constraint and make the inequality stronger:
(1) $a$ is a function of $(x, y)$
(2) $\operatorname{Pr}\left[X_{i} \mid A_{k}\right]>0 \& \operatorname{Pr}\left[Y_{j} \mid A_{k}\right]>0 \Rightarrow \operatorname{Pr}\left[X_{i}, Y_{j} \mid A_{k}\right]>0$

Theorem:

$$
\begin{gathered}
(1)+(2) \Longrightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b) \\
\Downarrow \\
\\
\\
I(a: b) \leq I(a: b \mid x)+I(a: b \mid y)+I(x: y)
\end{gathered}
$$

The same statement in terms of graphs:

- $G=$ bi-partite graph

The same statement in terms of graphs:

- $G=$ bi-partite graph
- each edge has a color

The same statement in terms of graphs:

- $G=$ bi-partite graph
- each edge has a color

From a graph to a distribution:

- take a random edge

The same statement in terms of graphs:

- $G=$ bi-partite graph
- each edge has a color

From a graph to a distribution:

- take a random edge
- $x=$ the left end of the edge
- $y=$ the right end of the edge

The same statement in terms of graphs:

- $G=$ bi-partite graph
- each edge has a color

From a graph to a distribution:

- take a random edge
- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge

The same statement in terms of graphs:

- $G=$ bi-partite graph
- each edge has a color

From a graph to a distribution:

- take a random edge
- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge


The same statement in terms of graphs:

- $G=$ bi-partite graph
- each edge has a color

From a graph to a distribution:

- take a random edge
- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge


And $b$ is whatever you want!

The same statement in terms of graphs:

- $G=$ bi-partite graph
- each edge has a color

From a graph to a distribution:

- take a random edge
- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge


And $b$ is whatever you want!
Our conditions:
(1) $a$ is uniquely defined by $x$ and $y$
(2) edges of each color make a clique

Th. (1) $+(2) \Rightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)$

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- edges of each color make a clique

Th. (1) $+(2) \Rightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)$

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- edges of each color make a clique

Th. $(1)+(2) \Rightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)$

## Proof:

- keep the distribution of $(a, b)$,
- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- edges of each color make a clique

Th. (1) $+(2) \Rightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)$

## Proof:

- keep the distribution of $(a, b)$, take $x$ and $y$ independently given $(a, b)$
- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- edges of each color make a clique

Th. $(1)+(2) \Rightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)$

## Proof:

- keep the distribution of $(a, b)$, take $x$ and $y$ independently given $(a, b)$
- trivial: $H\left(a, b, x^{\prime}, y^{\prime}\right)=H(a, b)+H(x \mid a, b)+H(y \mid a, b)$
- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- edges of each color make a clique

Th. (1) $+(2) \Rightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)$

## Proof:

- keep the distribution of $(a, b)$, take $x$ and $y$ independently given $(a, b)$
- trivial: $H\left(a, b, x^{\prime}, y^{\prime}\right)=H(a, b)+H(x \mid a, b)+H(y \mid a, b)$
- evident: $H\left(a, b, x^{\prime}, y^{\prime}\right) \leq H(b)+H(x \mid b)+H(y \mid b)+H\left(a \mid x^{\prime}, y^{\prime}\right)$
- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- edges of each color make a clique

Th. $(1)+(2) \Rightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)$

## Proof:

- keep the distribution of $(a, b)$, take $x$ and $y$ independently given $(a, b)$
- trivial: $H\left(a, b, x^{\prime}, y^{\prime}\right)=H(a, b)+H(x \mid a, b)+H(y \mid a, b)$
- evident: $H\left(a, b, x^{\prime}, y^{\prime}\right) \leq H(b)+H(x \mid b)+H(y \mid b)+H\left(a \mid x^{\prime}, y^{\prime}\right)$
- simple: $H\left(a, b, x^{\prime}, y^{\prime}\right) \leq H(b)+H(x \mid b)+H(y \mid b)+H$, $\left.x^{\prime}\right)$
- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- edges of each color make a clique

Th. (1) $+(2) \Rightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)$

## Proof:

- keep the distribution of $(a, b)$, take $x$ and $y$ independently given $(a, b)$
- trivial: $H\left(a, b, x^{\prime}, y^{\prime}\right)=H(a, b)+H(x \mid a, b)+H(y \mid a, b)$
- evident: $H\left(a, b, x^{\prime}, y^{\prime}\right) \leq H(b)+H(x \mid b)+H(y \mid b)+H\left(a \mid x^{\prime}, y^{\prime}\right)$
- simple: $H\left(a, b, x^{\prime}, y^{\prime}\right) \leq H(b)+H(x \mid b)+H(y \mid b)+H$, $\left.x^{\prime}\right)$
- result: $H(a, b)+H(x \mid a, b)+H(y \mid a, b) \leq H(b)+H(x \mid b)+H(y \mid b)$
- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- edges of each color make a clique

Th. (1) $+(2) \Rightarrow H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)$

## Proof:

- keep the distribution of $(a, b)$, take $x$ and $y$ independently given $(a, b)$
- trivial: $H\left(a, b, x^{\prime}, y^{\prime}\right)=H(a, b)+H(x \mid a, b)+H(y \mid a, b)$
- evident: $H\left(a, b, x^{\prime}, y^{\prime}\right) \leq H(b)+H(x \mid b)+H(y \mid b)+H\left(a \mid x^{\prime}, y^{\prime}\right)$
- simple: $H\left(a, b, x^{\prime}, y^{\prime}\right) \leq H(b)+H(x \mid b)+H(y \mid b)+H$, $\left.x^{\prime}\right)$
- result: $H(a, b)+H(x \mid a, b)+H(y \mid a, b) \leq H(b)+H(x \mid b)+H(y \mid b)$
- which implies $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)$


## So what?

## So what? Why do we need all these inequalities?

This is all about (bi-)clique covering!

This is all about (bi-)clique covering!
Let $G$ be bi-partite graph with colored edges.

This is all about (bi-)clique covering!
Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge


## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge
then $H(a \mid x, b, w)+H(a \mid y, b, w) \leq H(a \mid b, w)$.


## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge
then $H(a \mid x, b, w)+H(a \mid y, b, w) \leq H(a \mid b, w)$.
hence $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 H(w)$


## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge
then $H(a \mid x, b, w)+H(a \mid y, b, w) \leq H(a \mid b, w)$.
hence $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 H(w)$
it follows: $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 \log N$


## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge
then $H(a \mid x, b, w)+H(a \mid y, b, w) \leq H(a \mid b, w)$.
hence $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 H(w)$
it follows: $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 \log N$
Problem: Given $G$, we want to estimate its bi-clique covering number


## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by $N$ bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge
then $H(a \mid x, b, w)+H(a \mid y, b, w) \leq H(a \mid b, w)$.
hence $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 H(w)$
it follows: $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 \log N$
Problem: Given $G$, we want to estimate its bi-clique covering number Recipe:
- take a distribution $(a, x, y)$


## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge
then $H(a \mid x, b, w)+H(a \mid y, b, w) \leq H(a \mid b, w)$.
hence $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 H(w)$
it follows: $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 \log N$
Problem: Given $G$, we want to estimate its bi-clique covering number Recipe:
- take a distribution $(a, x, y)$ [e.g., a uniform distribution on edges]


## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge
then $H(a \mid x, b, w)+H(a \mid y, b, w) \leq H(a \mid b, w)$.
hence $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 H(w)$
it follows: $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 \log N$
Problem: Given $G$, we want to estimate its bi-clique covering number Recipe:
- take a distribution $(a, x, y)$ [e.g., a uniform distribution on edges]
- add a suitable $b$


## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge
then $H(a \mid x, b, w)+H(a \mid y, b, w) \leq H(a \mid b, w)$.
hence $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 H(w)$
it follows: $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 \log N$
Problem: Given $G$, we want to estimate its bi-clique covering number Recipe:
- take a distribution $(a, x, y)$ [e.g., a uniform distribution on edges]
- add a suitable $b$ [don't ask me how to invent this $b$ ]


## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge
then $H(a \mid x, b, w)+H(a \mid y, b, w) \leq H(a \mid b, w)$.
hence $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 H(w)$
it follows: $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 \log N$
Problem: Given $G$, we want to estimate its bi-clique covering number Recipe:
- take a distribution $(a, x, y)$ [e.g., a uniform distribution on edges]
- add a suitable $b$ [don't ask me how to invent this $b$ ]
- observe $H(a \mid x, b)+H(a \mid y, b) \not \leq H(a \mid b)$


## This is all about (bi-)clique covering!

Let $G$ be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x=$ the left end of the edge
- $y=$ the right end of the edge
- $a=$ the color of the edge
- $w=$ the index of a bi-clique covering the edge
then $H(a \mid x, b, w)+H(a \mid y, b, w) \leq H(a \mid b, w)$.
hence $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 H(w)$
it follows: $H(a \mid x, b)+H(a \mid y, b) \leq H(a \mid b)+2 \log N$
Problem: Given $G$, we want to estimate its bi-clique covering number Recipe:
- take a distribution $(a, x, y)$ [e.g., a uniform distribution on edges]
- add a suitable $b$ [don't ask me how to invent this $b$ ]
- observe $H(a \mid x, b)+H(a \mid y, b) \not \leq H(a \mid b)$
- then [bi-clique covering number] $\geq 2^{(H(a \mid x, b)+H(a \mid y, b)-H(a \mid b)) / 2}$


## Open problems:

(1) [geometry] The form of the cone of "entropic" points: infinitely many flat facets? or a curved surface?
(2) [complexity] Another conditional inequality by F. Matús: is it valid for Kolmogorov complexity?
(3) [combinatorics/complexity] Lower bounds for clique covering: find examples where this technique is more effective then the conventional arguments (applications to communication complexity).

