Constraint information inequalities: geometric, algorithmic and combinatorial views

Andrei Romashchenko (LIRMM)

a joint work with
T. Kaced (Hong Kong) and N. Vereshchagin (Moscow)

Journées Calculabilités, Montpellier

April 29 2014
Outline

1. Shannon entropy: basic definitions
2. “Standard” information inequalities
3. “Conditional” information inequalities
4. Conditional inequalities: geometric view
5. Information inequalities for Kolmogorov complexity
6. Towards combinatorial interpretation
Outline

1. Shannon entropy: basic definitions
2. “Standard” information inequalities
3. “Conditional” information inequalities
4. Conditional inequalities: geometric view
5. Information inequalities for Kolmogorov complexity
6. Towards combinatorial interpretation
Shannon’s entropy, the basic definition

\[H(\alpha) := \sum_i p_i \log \frac{1}{p_i} \]

Measure of uncertainty in \(\alpha \): 0 ≤ \(H(\alpha) \) ≤ \(\log k \)

Andrei Romashchenko
Constraint Information Inequalities
April 29 2014 4 / 31
Shannon’s entropy, the basic definition

random variable α:

\[
\begin{align*}
\text{Prob} \left[\alpha = s_i \right] &= p_i \\
\text{distribution:} &
s_1 s_2 \ldots s_k \\
p_1 &\geq 0, \sum p_i = 1
\end{align*}
\]

Definition:
\[
H(\alpha) := \sum_i p_i \log \frac{1}{p_i}
\]

Measure of uncertainty in α: $0 \leq H(\alpha) \leq \log k$

Andrei Romashchenko
Constraint Information Inequalities
April 29 2014
Shannon’s entropy, the basic definition

random variable $\alpha : \text{Prob}[\alpha = s_i] = p_i$
Shannon’s entropy, the basic definition

random variable $\alpha : \text{Prob}[\alpha = s_i] = p_i$

distribution:

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>\ldots</th>
<th>s_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>p_2</td>
<td>\ldots</td>
<td>p_k</td>
</tr>
</tbody>
</table>

$p_i \geq 0$, $\sum p_i = 1$
Shannon’s entropy, the basic definition

random variable $\alpha : \text{Prob}[\alpha = s_i] = p_i$

distribution: $\begin{array}{ccc} s_1 & s_2 & \cdots & s_k \\ p_1 & p_2 & \cdots & p_k \end{array}$, $p_i \geq 0$, $\sum p_i = 1$

Definition: $H(\alpha) := \sum_i p_i \log \frac{1}{p_i}$
Shannon’s entropy, the basic definition

random variable $\alpha : \text{Prob}[\alpha = s_i] = p_i$

distribution: $\begin{array}{cccc}
s_1 & s_2 & \ldots & s_k \\
p_1 & p_2 & \ldots & p_k \\
\end{array}$, $p_i \geq 0$, $\sum p_i = 1$

Definition: $H(\alpha) := \sum_i p_i \log \frac{1}{p_i}$

Measure of uncertainty in α : $0 \leq H(\alpha) \leq \log k$
Shannon’s entropy, more notation

\[\text{Pr} \left[\alpha = s_i \land \beta = t_j \right] = p_{ij} \]

Principle entropy quantities:

\[H(\alpha), H(\beta), H(\alpha, \beta) \]

Conditions entropies:

\[H(\alpha | \beta) = H(\alpha, \beta) - H(\beta) \]
\[H(\beta | \alpha) = H(\alpha, \beta) - H(\alpha) \]

Mutual information:

\[I(\alpha : \beta) = H(\alpha) + H(\beta) - H(\alpha, \beta) \]
\[= H(\alpha) - H(\alpha | \beta) \]
\[= H(\beta) - H(\beta | \alpha) \]
Shannon’s entropy, more notation
random variables α, β

Distribution: $\text{Prob}[\alpha = s, \beta = t] = p_{ij}$

Principle entropy quantities:
- $H(\alpha)$
- $H(\beta)$
- $H(\alpha, \beta)$

Conditions entropies:
- $H(\alpha | \beta) = H(\alpha, \beta) - H(\beta)$
- $H(\beta | \alpha) = H(\alpha, \beta) - H(\alpha)$

Mutual information:
- $I(\alpha : \beta) = H(\alpha) + H(\beta) - H(\alpha, \beta)$
Shannon’s entropy, more notation

random variables α, β

distribution: $\text{Prob}[\alpha = s_i \& \beta = t_j] = p_{ij}$
Shannon’s entropy, more notation
random variables α, β
distribution: $\text{Prob}[\alpha = s_i \& \beta = t_j] = p_{ij}$
Principle entropy quantities: $H(\alpha), H(\beta), H(\alpha, \beta)$.
Shannon’s entropy, more notation
random variables α, β
distribution: $\text{Prob}[\alpha = s_i \& \beta = t_j] = p_{ij}$

Principle entropy quantities: $H(\alpha), H(\beta), H(\alpha, \beta)$.

Conditions entropies:

$$H(\alpha \mid \beta) = H(\alpha, \beta) - H(\beta),$$
$$H(\beta \mid \alpha) = H(\alpha, \beta) - H(\alpha).$$
Shannon’s entropy, more notation

random variables α, β

distribution: $\text{Prob}[\alpha = s_i \& \beta = t_j] = p_{ij}$

Principle entropy quantities: $H(\alpha), H(\beta), H(\alpha, \beta)$.

Conditions entropies:

\[
H(\alpha | \beta) = H(\alpha, \beta) - H(\beta),
\]
\[
H(\beta | \alpha) = H(\alpha, \beta) - H(\alpha).
\]

Mutual information:

\[
I(\alpha : \beta) = H(\alpha) + H(\beta) - H(\alpha, \beta)
\]
Shannon’s entropy, more notation
random variables α, β
distribution: $\text{Prob}[\alpha = s_i \& \beta = t_j] = p_{ij}$

Principle entropy quantities: $H(\alpha), H(\beta), H(\alpha, \beta)$.

Conditions entropies:

$$H(\alpha \mid \beta) = H(\alpha, \beta) - H(\beta),$$
$$H(\beta \mid \alpha) = H(\alpha, \beta) - H(\alpha).$$

Mutual information:

$$I(\alpha : \beta) = H(\alpha) + H(\beta) - H(\alpha, \beta)$$
$$= H(\alpha) - H(\alpha \mid \beta)$$
Shannon’s entropy, more notation
random variables α, β
distribution: $\text{Prob}[\alpha = s_i \& \beta = t_j] = p_{ij}$

Principle entropy quantities: $H(\alpha), H(\beta), H(\alpha, \beta)$.

Conditions entropies:

\[H(\alpha \mid \beta) = H(\alpha, \beta) - H(\beta), \]
\[H(\beta \mid \alpha) = H(\alpha, \beta) - H(\alpha). \]

Mutual information:

\[I(\alpha : \beta) = H(\alpha) + H(\beta) - H(\alpha, \beta) \]
\[= H(\alpha) - H(\alpha \mid \beta) \]
\[= H(\beta) - H(\beta \mid \alpha) \]
1. Shannon entropy: basic definitions
2. “Standard” information inequalities
3. “Conditional” information inequalities
4. Conditional inequalities: geometric view
5. Information inequalities for Kolmogorov complexity
6. Towards combinatorial interpretation
Linear information inequalities

Basic inequalities:

\[H(a, b) \leq H(a) + H(b) \]

\[I(a:b) \geq 0 \]

\[H(a, b, c) + H(c) \leq H(a, c) + H(b, c) \]

\[I(a:b|c) \geq 0 \]

Shannon type inequations:

Example 1:

\[H(a) \leq H(a|b) + H(a|c) + I(b:c) \]

Example 2:

\[2H(a, b, c) \leq H(a, b) + H(a, c) + H(b, c) \]
Linear information inequalities

Basic inequalities:

\[H(a, b) \leq H(a) + H(b) \]

\[I(a : b) \geq 0 \]
Linear information inequalities

Basic inequalities:

\[H(a, b) \leq H(a) + H(b) \quad [I(a : b) \geq 0] \]

\[H(a, b, c) + H(c) \leq H(a, c) + H(b, c) \quad [I(a : b | c) \geq 0] \]
Linear information inequalities

Basic inequalities:

\[H(a, b) \leq H(a) + H(b) \quad [I(a : b) \geq 0] \]

\[H(a, b, c) + H(c) \leq H(a, c) + H(b, c) \quad [I(a : b | c) \geq 0] \]

[**Shannon type ineq**] == [combinations of basic ineq]:

example 1: \(H(a) \leq H(a | b) + H(a | c) + I(b : c) \)

example 2: \(2H(a, b, c) \leq H(a, b) + H(a, c) + H(b, c) \)
Linear information inequalities

General form: A linear information inequality is a combination of reals \(\{\lambda_{i_1, \ldots, i_k}\} \) such that

\[
\sum \lambda_{i_1, \ldots, i_k} H(a_{i_1}, \ldots, a_{i_k}) \geq 0
\]

for all \((a_1, \ldots, a_n) \).
Linear information inequalities

General form: A linear information inequality is a combination of reals $\{\lambda_{i_1,...,i_k}\}$ such that

$$\sum \lambda_{i_1,...,i_k} H(a_{i_1}, \ldots, a_{i_k}) \geq 0$$

for all (a_1, \ldots, a_n).

Applications:

- multi-source network coding
- secret sharing
- combinatorial interpretations
- group theoretical interpretation
- Kolmogorov complexity
- ...
Once again, **Shannon type information inequalities**:

- **subadditivity**,
 \[H(A \cup B) \leq H(A) + H(B) \]
 [in other notation \(I(A : B) \geq 0 \)]

- **submodularity**,
 \[H(A \cup B \cup C) + H(C) \leq H(A \cup C) + H(B \cup C) \]
 [in other notation \(I(A : B|C) \geq 0 \)]

- **linear combinations of basic inequalities**
Once again, Shannon type information inequalities:

- Subadditivity,
 \[H(A \cup B) \leq H(A) + H(B) \]
 [in other notation \(I(A : B) \geq 0 \)]

- Submodularity,
 \[H(A \cup B \cup C) + H(C) \leq H(A \cup C) + H(B \cup C) \]
 [in other notation \(I(A : B | C) \geq 0 \)]

- Linear combinations of basic inequalities

Th [Z. Zhang, R.W. Yeung 1998] There exists a non-Shannon type information inequality:

\[I(c : d) \leq 2I(c : d | a) + I(c : d | b) + I(a : b) + I(a : c | d) + I(a : d | c) \]
Theorem [Z. Zhang, R.W. Yeung 1997] There exists a conditional non Shannon type inequality:

\[I(x : y) = I(x : y \mid a) = 0 \]

\[\Downarrow \]

\[I(a : b) \leq I(a : b \mid x) + I(a : b \mid y) \]
Outline

1 Shannon entropy: basic definitions
2 “Standard” information inequalities
3 “Conditional” information inequalities
4 Conditional inequalities: geometric view
5 Information inequalities for Kolmogorov complexity
6 Towards combinatorial interpretation
Conditional information inequalities

(a) Trivial, Shannon-type:

if $I(x : y) = 0$ then $H(a) \leq H(a | x) + H(a | y)$
Conditional information inequalities

(a) Trivial, Shannon-type:

if $I(x : y) = 0$ then $H(a) \leq H(a \mid x) + H(a \mid y)$

this is true since $H(a) \leq H(a \mid x) + H(a \mid y) + I(x : y)$

[Shannon-type unconditional inequality]
Conditional information inequalities

(b) **Trivial, non Shannon-type:**

If \(I(a : b | z) = I(a : z | b) = I(b : z | a) = 0 \) then

\[
I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y)
\]
Conditional information inequalities

(b) Trivial, non Shannon-type:

if \(I(a : b | z) = I(a : z | b) = I(b : z | a) = 0 \) then

\[
I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y)
\]

this is true since

\[
I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y) + I(a : b | z) + I(a : z | b) + I(b : z | a)
\]

[non Shannon-type unconditional inequality]
Conditional information inequalities

(c) Non trivial, non Shannon-type:

- **Zhang, Yeung 97**: if \(I(x : y) = I(x : y | a) = 0 \) then
 \[
 I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y)
 \]
Conditional information inequalities

(c) Non trivial, non Shannon-type:

- **Zhang, Yeung 97**: if \(I(x : y) = I(x : y \mid a) = 0 \) then
 \[
 I(a : b) \leq I(a : b \mid x) + I(a : b \mid y) + I(x : y)
 \]

- **F. Matúš 99**: if \(I(x : a \mid b) = I(x : b \mid a) = 0 \) then
 \[
 I(a : b) \leq I(a : b \mid x) + I(a : b \mid y) + I(x : y)
 \]
Conditional information inequalities

(c) Non trivial, non Shannon-type:

- **Zhang, Yeung 97**: if \(I(x : y) = I(x : y | a) = 0 \) then
 \[
 I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y)
 \]

- **F. Matúš 99**: if \(I(x : a | b) = I(x : b | a) = 0 \) then
 \[
 I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y)
 \]

- **Tarik Kaced and A.R. 2011**: if
 \[
 H(a | x, y) = I(x : y | a) = 0
 \]
 \[
 I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y)
 \]
\[
\begin{align*}
I(x : y) = I(x : y|a) &= 0 \quad \blacktriangleright \quad [\text{Zhang–Yeung'97}] \\
I(x : a|b) = I(x : b|a) &= 0 \quad \blacktriangleright \quad [\text{Matúš'99}] \\
H(a|x, y) = I(x : y|a) &= 0 \quad \blacktriangleright \quad [\text{T.Kaced and A.R.'11}]
\end{align*}
\]

\[
I(a : b) \leq I(a : b|x) + I(a : b|y) + I(x : y)
\]
\[I(x : y) = I(x : y \mid a) = 0 \]
\[I(x : a \mid b) = I(x : b \mid a) = 0 \]
\[H(a \mid x, y) = I(x : y \mid a) = 0 \]

\[I(a : b) \leq I(a : b \mid x) + I(a : b \mid y) + I(x : y) \]

Theorem. These three statements are *essentially* conditional inequalities.
Theorem The inequality

\[H(a|x, y) = I(x : y|a) = 0 \Rightarrow I(a : b) \leq I(a : b|x) + I(a : b|y) + I(x : y) \]

is essentially conditional.
Theorem The inequality

\[H(a|x, y) = I(x : y | a) = 0 \Rightarrow I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y) \]

is essentially conditional.

We cannot reduce it to an unconditional inequality!
Theorem The inequality

\[H(a|x, y) = I(x : y | a) = 0 \Rightarrow I(a : b) \leq I(a : b|x) + I(a : b|y) + I(x : y) \]

is *essentially* conditional.

We cannot reduce it to an unconditional inequality!

That is, for all \(\lambda_1, \lambda_2 \) the inequality

\[I(a : b) \leq I(a : b|x) + I(a : b|y) + I(x : y) + \lambda_1 H(a|x, y) + \lambda_2 I(x : y | a) \]

does not hold.
Theorem The inequality

\[H(a|x, y) = I(x : y | a) = 0 \Rightarrow I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y) \]

is essentially conditional.

We cannot reduce it to an unconditional inequality!

More precisely, for all \(\lambda_1, \lambda_2 \) there exist \((a, b, c, d)\) such that

\[I(a : b) \not\leq I(a : b | x) + I(a : b | y) + I(x : y) + \lambda_1 H(a|x, y) + \lambda_2 I(x : y | a) \]
Claim: For any λ_1, λ_2 there exist (a, b, c, d) such that

$$I(a : b) \not\leq I(a : b|x) + I(a : b|y) + I(x : y) + \lambda_1 H(a|x, y) + \lambda_2 I(x : y | a)$$
Claim: For any λ_1, λ_2 there exist (a, b, c, d) such that

$$I(a : b) \not\leq I(a : b|x) + I(a : b|y) + I(x : y) + \lambda_1 H(a|x, y) + \lambda_2 I(x : y | a)$$

Proof: a family of counter-examples
Claim: For any λ_1, λ_2 there exist (a, b, c, d) such that

$$I(a : b) \not\leq I(a : b|x) + I(a : b|y) + I(x : y) + \lambda_1 H(a|x, y) + \lambda_2 I(x : y | a)$$

Proof: a family of counter-examples

- fix a finite field \mathbb{F}
- a is a random line (a polynomial of degree 1 over \mathbb{F})
Claim: For any \(\lambda_1, \lambda_2 \) there exist \((a, b, c, d)\) such that
\[
I(a : b) \not\leq I(a : b|x) + I(a : b|y) + I(x : y) + \lambda_1 H(a|x, y) + \lambda_2 I(x : y | a)
\]

Proof: a family of counter-examples

- fix a finite field \(\mathbb{F} \)
- \(a \) is a random line (a polynomial of degree 1 over \(\mathbb{F} \))
- \(x \) and \(y \) are two different points in this line
Claim: For any λ_1, λ_2 there exist (a, b, c, d) such that

$$I(a : b) \lesssim I(a : b | x) + I(a : b | y) + I(x : y) + \lambda_1 H(a | x, y) + \lambda_2 I(x : y | a)$$

Proof: a family of counter-examples

- fix a finite field \mathbb{F}
- a is a random line (a polynomial of degree 1 over \mathbb{F})
- x and y are two different points in this line
- b is a parabola (a polynomial of degree 2) that intersects a at x and y
Claim: For any λ_1, λ_2 there exist (a, b, c, d) such that

$$I(a : b) \not\leq I(a : b | x) + I(a : b | y) + I(x : y) + \lambda_1 H(a | x, y) + \lambda_2 I(x : y | a)$$

Proof: a family of counter-examples

- fix a finite field \mathbb{F}
- a is a random *line* (a polynomial of degree 1 over \mathbb{F})
- x and y are two different *points* in this line
- b is a *parabola* (a polynomial of degree 2) that intersects a at x and y

$$I(a : b) \not\leq I(a : b | x) + I(a : b | y) + I(x : y) + \lambda_1 H(a | x, y) + \lambda_2 I(x : y | a)$$

$$\parallel \quad \parallel \quad \parallel \quad \parallel \quad \parallel$$

$$1 + o(1) \not\leq o(1) + o(1) + o(1) + 0 + o(1)$$
Outline

1. Shannon entropy: basic definitions
2. “Standard” information inequalities
3. “Conditional” information inequalities
4. Conditional inequalities: geometric view
5. Information inequalities for Kolmogorov complexity
6. Towards combinatorial interpretation
A geometric view on conditional inequalities:

\[-x + y + 1 \geq 0\]

if \(y = 0\) then \(x \leq 1\)
A geometric view on conditional inequalities:

\[-x + y + 1 \geq 0\]

if \(y = 0\) then \(x \leq 1\) \(\iff\) \(x \leq 1 + y\)
A geometric view on conditional inequalities:

if $y = 0$ then $x \leq 1 \iff x \leq 1 + y$

NOT essentially conditional
A geometric view on conditional inequalities:

if \(y = 0 \) then \(x \leq 1 \)
A geometric view on conditional inequalities:

if \(y = 0 \) then \(x \leq 1 \) \(\iff \) from an *infinite* family of linear inequalities
A geometric view on conditional inequalities:

if \(y = 0 \) then \(x \leq 1 \) \iff \text{from an infinite family of linear inequalities}

NO unconditional inequality \(x \leq 1 + \lambda y \)
A geometric view on conditional inequalities:

if \(y = 0 \) then \(x \leq 1 \) \iff \text{from an } infinite \text{ family of linear inequalities}

NO unconditional inequality \(x \leq 1 + \lambda y \)

this inequality is essentially conditional
A geometric view on conditional inequalities:

if $y = 0$ then $x \leq 1$
A geometric view on conditional inequalities:

If \(y = 0 \) then \(x \leq 1 \) \(\iff \) from a complex structure of the borderline
A geometric view on conditional inequalities:

if \(y = 0 \) then \(x \leq 1 \) \iff \text{from a complex structure of the borderline}

NO unconditional inequality \(x \leq 1 + \lambda y \)
A geometric view on conditional inequalities:

if \(y = 0\) then \(x \leq 1\) \iff \text{from a complex structure of the borderline}

NO unconditional inequality \(x \leq 1 + \lambda y\)

this inequality is also essentially conditional
Outline

1. Shannon entropy: basic definitions
2. “Standard” information inequalities
3. “Conditional” information inequalities
4. Conditional inequalities: geometric view
5. Information inequalities for Kolmogorov complexity
6. Towards combinatorial interpretation
Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon’s entropy and for Kolmogorov complexity.

\[H(a_1, a_2) \leq H(a_1) + H(a_2) \leq C(a_1, a_2) \leq C(a_1) + C(a_2) + O(\log N) \]
Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon’s entropy and for Kolmogorov complexity.

 \[H(a_1, a_2) \leq H(a_1) + H(a_2) \text{ vs } C(a_1, a_2) \leq C(a_1) + C(a_2) + O(\log N) \]
Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon’s entropy and for Kolmogorov complexity.

 e.g. \(H(a_1, a_2) \leq H(a_1) + H(a_2) \) vs \(C(a_1, a_2) \leq C(a_1) + C(a_2) + O(\log N) \)

 the general scheme: \(\lambda_1 H(a_1) + \lambda_2 H(a_2) + \ldots + \lambda_{12} H(a_1, a_2) + \ldots \geq 0 \)

 is equivalent to

 \(\lambda_1 C(a_1) + \lambda_2 C(a_2) + \ldots + \lambda_{12} C(a_1, a_2) + \ldots + O(\log N) \geq 0 \)
Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon’s entropy and for Kolmogorov complexity.

 e.g. \(H(a_1, a_2) \leq H(a_1) + H(a_2) \) vs \(C(a_1, a_2) \leq C(a_1) + C(a_2) + O(\log N) \)

 the general scheme: \(\lambda_1 H(a_1) + \lambda_2 H(a_2) + \ldots + \lambda_{12} H(a_1, a_2) + \ldots \geq 0 \)

 is equivalent to

 \(\lambda_1 C(a_1) + \lambda_2 C(a_2) + \ldots + \lambda_{12} C(a_1, a_2) + \ldots + O(\log N) \geq 0 \)

- Essentially conditional inequality [Matúš’99] is valid for Kolmogorov complexity (in some sense).
Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon’s entropy and for Kolmogorov complexity.

 e.g. $H(a_1, a_2) \leq H(a_1) + H(a_2)$ vs $C(a_1, a_2) \leq C(a_1) + C(a_2) + O(\log N)$

 the general scheme: $\lambda_1 H(a_1) + \lambda_2 H(a_2) + \ldots + \lambda_{12} H(a_1, a_2) + \ldots \geq 0$

 is equivalent to

 $\lambda_1 C(a_1) + \lambda_2 C(a_2) + \ldots + \lambda_{12} C(a_1, a_2) + \ldots + O(\log N) \geq 0$

- Essentially conditional inequality [Matúš'99] is valid for Kolmogorov complexity (in some sense).

 $I(x : a | b) \leq \sqrt{N}$ & $I(x : b | a) \leq \sqrt{N} \Rightarrow I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y) + O(N^{3/4})$
Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon’s entropy and for Kolmogorov complexity.

 e.g. $H(a_1, a_2) \leq H(a_1) + H(a_2)$ vs $C(a_1, a_2) \leq C(a_1) + C(a_2) + O(\log N)$

 the general scheme: $\lambda_1 H(a_1) + \lambda_2 H(a_2) + \ldots + \lambda_{12} H(a_1, a_2) + \ldots \geq 0$

 is equivalent to

 $\lambda_1 C(a_1) + \lambda_2 C(a_2) + \ldots + \lambda_{12} C(a_1, a_2) + \ldots + O(\log N) \geq 0$

- **Essentially conditional** inequality [Matúš’99] is valid for Kolmogorov complexity (in *some* sense).

 $I(x : a | b) \leq \sqrt{N} \& I(x : b | a) \leq \sqrt{N} \Rightarrow I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y) + O(N^{3/4})$

- **Essentially conditional** inequalities [Zhang–Yeung’97] and [Kaced–R.’11] are not for Kolmogorov complexity
Inequalities for Kolmogorov complexity:

- Exactly the same classes of unconditional linear inequalities hold for Shannon’s entropy and for Kolmogorov complexity.

 e.g. \(H(a_1, a_2) \leq H(a_1) + H(a_2) \) vs \(C(a_1, a_2) \leq C(a_1) + C(a_2) + O(\log N) \)

 the general scheme: \(\lambda_1 H(a_1) + \lambda_2 H(a_2) + \ldots + \lambda_{12} H(a_1, a_2) + \ldots \geq 0 \)

 is equivalent to

 \(\lambda_1 C(a_1) + \lambda_2 C(a_2) + \ldots + \lambda_{12} C(a_1, a_2) + \ldots + O(\log N) \geq 0 \)

- Essentially conditional inequality [Matůš'99] is valid for Kolmogorov complexity (in some sense).

 \(I(x : a | b) \leq \sqrt{N} \) & \(I(x : b | a) \leq \sqrt{N} \Rightarrow I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y) + O(N^{3/4}) \)

Outline

1. Shannon entropy: basic definitions
2. “Standard” information inequalities
3. “Conditional” information inequalities
4. Conditional inequalities: geometric view
5. Information inequalities for Kolmogorov complexity
6. Towards combinatorial interpretation
Once again,

Theorem: \(H(a|x, y) = I(x : y | a) = 0 \Rightarrow I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y) \)**
Once again,

Theorem: $H(a|x, y) = I(x : y | a) = 0 \Rightarrow I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y)$

Why is it valid?
Once again,

Theorem: \(H(a|x,y) = I(x:y|a) = 0 \Rightarrow I(a:b) \leq I(a:b|x) + I(a:b|y) + I(x:y) \)

Why is it valid? And what does it mean?
Once again,

Theorem: $H(a|x, y) = I(x : y | a) = 0 \Rightarrow I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y)$

Why is it valid? And what does it mean?

We relax the constraint and make the inequality stronger:

1. a is a function of (x, y)
2. $\Pr[X_i | A_k] > 0 \& \Pr[Y_j | A_k] > 0 \Rightarrow \Pr[X_i, Y_j | A_k] > 0$

Theorem:

$$(1) + (2) \implies H(a | x, b) + H(a | y, b) \leq H(a | b)$$
Once again,

Theorem: $H(a|x, y) = I(x : y | a) = 0 \Rightarrow I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y)$

Why is it valid? And what does it mean?

We relax the constraint and make the inequality stronger:

1. a is a function of (x, y)
2. $\Pr[X_i | A_k] > 0 \& \Pr[Y_j | A_k] > 0 \Rightarrow \Pr[X_i, Y_j | A_k] > 0$

Theorem:

\[(1) + (2) \implies H(a | x, b) + H(a | y, b) \leq H(a | b) \]

\[\Downarrow \]

\[I(a : b) \leq I(a : b | x) + I(a : b | y) + I(x : y) \]
The same statement in terms of graphs:

- $G = \text{bi-partite graph}$
The same statement in terms of graphs:

- $G =$ bi-partite graph
- each edge has a color
The same statement in terms of graphs:

- $G = \text{bi-partite graph}$
- each edge has a color

From a graph to a distribution:

- take a random edge
The same statement in terms of graphs:

- $G =$ bi-partite graph
- each edge has a color

From a graph to a distribution:

- take a random edge
- $x =$ the left end of the edge
- $y =$ the right end of the edge
The same statement in terms of graphs:

- $G = \text{bi-partite graph}$
- each edge has a color

From a graph to a distribution:

- take a random edge
- $x = \text{the left end of the edge}$
- $y = \text{the right end of the edge}$
- $a = \text{the color of the edge}$
The same statement in terms of graphs:

- $G = \text{bi-partite graph}$
- each edge has a color

From a graph to a distribution:

- take a random edge
- $x = \text{the left end of the edge}$
- $y = \text{the right end of the edge}$
- $a = \text{the color of the edge}$

Andrei Romashchenko
Constraint Information Inequalities
April 29 2014 27 / 31
The same statement in terms of graphs:

- G = bi-partite graph
- each edge has a color

From a graph to a distribution:

- take a random edge
- x = the left end of the edge
- y = the right end of the edge
- a = the color of the edge

And b is whatever you want!
The same statement in terms of graphs:

- $G = \text{bi-partite graph}$
- each edge has a color

From a graph to a distribution:

- take a random edge
- $x = \text{the left end of the edge}$
- $y = \text{the right end of the edge}$
- $a = \text{the color of the edge}$

And b is whatever you want!

Our conditions:

1. a is uniquely defined by x and y
2. edges of each color make a clique

Th. (1) + (2) $\Rightarrow H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b)$
- x = the left end of the edge
- y = the right end of the edge
- a = the color of the edge
- edges of each color make a clique

Th. (1) + (2) ⇒ $H(a|x, b) + H(a|y, b) ≤ H(a|b)$
• $x =$ the left end of the edge
• $y =$ the right end of the edge
• $a =$ the color of the edge
• edges of each color make a clique

Th. (1) + (2) $\Rightarrow H(a| x, b) + H(a| y, b) \leq H(a| b)$

Proof:
• keep the distribution of (a, b),
* $x =$ the left end of the edge
* $y =$ the right end of the edge
* $a =$ the color of the edge
* edges of each color make a clique

Th. (1) + (2) $\Rightarrow H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b)$

Proof:

* keep the distribution of (a, b), take x and y independently given (a, b)
\[x = \text{the left end of the edge} \]
\[y = \text{the right end of the edge} \]
\[a = \text{the color of the edge} \]
\[\text{edges of each color make a clique} \]

**Th. (1) + (2) \Rightarrow H(a | x, b) + H(a | y, b) \leq H(a | b) **

Proof:

- keep the distribution of \((a, b)\), take \(x\) and \(y\) independently given \((a, b)\)
- trivial: \(H(a, b, x', y') = H(a, b) + H(x | a, b) + H(y | a, b)\)
\[x = \text{the left end of the edge} \]
\[y = \text{the right end of the edge} \]
\[a = \text{the color of the edge} \]
\[\text{edges of each color make a clique} \]

\textbf{Th. (1) + (2) ⇒} \[H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) \]

\textbf{Proof:}

\[\text{keep the distribution of } (a, b), \text{ take } x \text{ and } y \text{ independently given } (a, b) \]
\[\text{trivial: } H(a, b, x', y') = H(a, b) + H(x \mid a, b) + H(y \mid a, b) \]
\[\text{evident: } H(a, b, x', y') \leq H(b) + H(x \mid b) + H(y \mid b) + H(a \mid x', y') \]
\(x = \) the left end of the edge
\(y = \) the right end of the edge
\(a = \) the color of the edge
\(\) edges of each color make a clique

**Th. (1) + (2) \Rightarrow H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) **

Proof:

- keep the distribution of \((a, b)\), take \(x\) and \(y\) independently given \((a, b)\)
- trivial: \(H(a, b, x', y') = H(a, b) + H(x \mid a, b) + H(y \mid a, b)\)
- evident: \(H(a, b, x', y') \leq H(b) + H(x \mid b) + H(y \mid b) + H(a \mid x', y')\)
- simple: \(H(a, b, x', y') \leq H(b) + H(x \mid b) + H(y \mid b) + H(a \mid x', y')\)
\[x = \text{the left end of the edge} \]
\[y = \text{the right end of the edge} \]
\[a = \text{the color of the edge} \]

edges of each color make a clique

Th. \((1) + (2) \Rightarrow H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b)\]

Proof:

1. keep the distribution of \((a, b)\), take \(x\) and \(y\) independently given \((a, b)\)
2. trivial: \(H(a, b, x', y') = H(a, b) + H(x \mid a, b) + H(y \mid a, b)\)
3. evident: \(H(a, b, x', y') \leq H(b) + H(x \mid b) + H(y \mid b) + H(a \mid x', y')\)
4. simple: \(H(a, b, x', y') \leq H(b) + H(x \mid b) + H(y \mid b) + H(a \mid x', y')\)
5. result: \(H(a, b) + H(x \mid a, b) + H(y \mid a, b) \leq H(b) + H(x \mid b) + H(y \mid b)\)
\(x = \) the left end of the edge

\(y = \) the right end of the edge

\(a = \) the color of the edge

edges of each color make a clique

Th. (1) + (2) \(\Rightarrow \) \(H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) \)

Proof:

- keep the distribution of \((a, b)\), take \(x\) and \(y\) independently given \((a, b)\)
- trivial: \(H(a, b, x', y') = H(a, b) + H(x \mid a, b) + H(y \mid a, b) \)
- evident: \(H(a, b, x', y') \leq H(b) + H(x \mid b) + H(y \mid b) + H(a \mid x', y') \)
- simple: \(H(a, b, x', y') \leq H(b) + H(x \mid b) + H(y \mid b) + H(a \mid x', y') \)
- result: \(H(a, b) + H(x \mid a, b) + H(y \mid a, b) \leq H(b) + H(x \mid b) + H(y \mid b) \)
- which implies \(H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) \)
So what?
So what? Why do we need all these inequalities?
This is all about (bi-)clique covering!

Let G be a bi-partite graph with colored edges. Assume that edges of each color can be covered by N bi-cliques. Let x be the left end of the edge, y be the right end of the edge, a be the color of the edge, and w be the index of a bi-clique covering the edge. Then

$$H(a|x,b,w) + H(a|y,b,w) \leq H(a|b,w).$$

Hence

$$H(a|x,b) + H(a|y,b) \leq H(a|b) + 2H(w).$$

It follows:

$$H(a|x,b) + H(a|y,b) \leq H(a|b) + 2\log N.$$

Problem: Given G, we want to estimate its bi-clique covering number.

Recipe: take a distribution (a,x,y) [e.g., a uniform distribution on edges] and add a suitable b [don't ask me how to invent this]. Observe

$$H(a|x,b) + H(a|y,b) \neq H(a|b).$$

Then the bi-clique covering number $\geq 2(H(a|x,b) + H(a|y,b) - H(a|b))/2$.

Andrei Romashchenko
Constraint Information Inequalities
April 29 2014 30 / 31
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges.
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges. Assume that edges of each color can be covered by N bi-cliques.
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges. Assume that edges of each color can be covered by N bi-cliques

- $x =$ the left end of the edge
- $y =$ the right end of the edge
- $a =$ the color of the edge
- $w =$ the index of a bi-clique covering the edge

\[
H(a|x, b, w) + H(a|y, b, w) \leq H(a|b, w)
\]

There follows:

\[
H(a|x, b) + H(a|y, b) \leq H(a|b) + 2\log N
\]

Problem: Given G, we want to estimate its bi-clique covering number

Recipe:
- take a distribution (a, x, y) [e.g., a uniform distribution on edges]
- add a suitable b [don't ask me how to invent this b]
- observe

\[
H(a|x, b) + H(a|y, b) \neq H(a|b)
\]

then [bi-clique covering number] $\geq 2(H(a|x, b) + H(a|y, b) - H(a|b))/2$
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges. Assume that edges of each color can be covered by N bi-cliques.

- $x =$ the left end of the edge
- $y =$ the right end of the edge
- $a =$ the color of the edge
- $w =$ the index of a bi-clique covering the edge

then $H(a \mid x, b, w) + H(a \mid y, b, w) \leq H(a \mid b, w)$.

Problem: Given G, we want to estimate its bi-clique covering number.

Recipe: take a distribution (a, x, y) [e.g., a uniform distribution on edges]
add a suitable b [don't ask me how to invent this b]
observe $H(a \mid x, b, w) + H(a \mid y, b, w) \neq H(a \mid b, w)$ then [bi-clique covering number] $\geq 2 \left(H(a \mid x, b, w) + H(a \mid y, b, w) - H(a \mid b, w) \right) / 2$
This is all about (bi-)clique covering!

Let \(G \) be bi-partite graph with colored edges. Assume that edges of each color can be covered by \(N \) bi-cliques

- \(x \) = the left end of the edge
- \(y \) = the right end of the edge
- \(a \) = the color of the edge
- \(w \) = the index of a bi-clique covering the edge

\[H(a \mid x, b, w) + H(a \mid y, b, w) \leq H(a \mid b, w). \]

\[\text{hence} \ H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2H(w) \]
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges. Assume that edges of each color can be covered by N bi-cliques

- $x =$ the left end of the edge
- $y =$ the right end of the edge
- $a =$ the color of the edge
- $w =$ the index of a bi-clique covering the edge

then $H(a \mid x, b, w) + H(a \mid y, b, w) \leq H(a \mid b, w)$.

hence $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2H(w)$

it follows: $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2 \log N$
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges.
Assume that edges of each color can be covered by N bi-cliques

- $x =$ the left end of the edge
- $y =$ the right end of the edge
- $a =$ the color of the edge
- $w =$ the index of a bi-clique covering the edge

then $H(a | x, b, w) + H(a | y, b, w) \leq H(a | b, w)$.

hence $H(a | x, b) + H(a | y, b) \leq H(a | b) + 2H(w)$

it follows: $H(a | x, b) + H(a | y, b) \leq H(a | b) + 2\log N$

Problem: Given G, we want to estimate its bi-clique covering number
This is all about (bi-)clique covering!

Let \(G \) be a bi-partite graph with colored edges. Assume that edges of each color can be covered by \(N \) bi-cliques.

- \(x \) = the left end of the edge
- \(y \) = the right end of the edge
- \(a \) = the color of the edge
- \(w \) = the index of a bi-clique covering the edge

Then \(H(a \mid x, b, w) + H(a \mid y, b, w) \leq H(a \mid b, w) \).

Hence \(H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2H(w) \)

It follows: \(H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2 \log N \)

Problem: Given \(G \), we want to estimate its bi-clique covering number

Recipe:
- take a distribution \((a, x, y)\)
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges. Assume that edges of each color can be covered by N bi-cliques

- $x =$ the left end of the edge
- $y =$ the right end of the edge
- $a =$ the color of the edge
- $w =$ the index of a bi-clique covering the edge

then $H(a \mid x, b, w) + H(a \mid y, b, w) \leq H(a \mid b, w)$.

hence $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2H(w)$

it follows: $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2\log N$

Problem: Given G, we want to estimate its bi-clique covering number

Recipe:
- take a distribution (a, x, y) [e.g., a uniform distribution on edges]
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges. Assume that edges of each color can be covered by N bi-cliques

- $x =$ the left end of the edge
- $y =$ the right end of the edge
- $a =$ the color of the edge
- $w =$ the index of a bi-clique covering the edge

then $H(a \mid x, b, w) + H(a \mid y, b, w) \leq H(a \mid b, w)$.

hence $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2H(w)$

it follows: $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2\log N$

Problem: Given G, we want to estimate its bi-clique covering number

Recipe:

- take a distribution (a, x, y) [e.g., a uniform distribution on edges]
- add a suitable b
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges. Assume that edges of each color can be covered by N bi-cliques

- $x =$ the left end of the edge
- $y =$ the right end of the edge
- $a =$ the color of the edge
- $w =$ the index of a bi-clique covering the edge

then $H(a \mid x, b, w) + H(a \mid y, b, w) \leq H(a \mid b, w)$.

hence $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2H(w)$

It follows: $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2\log N$

Problem: Given G, we want to estimate its *bi-clique covering number*

Recipe:

- take a distribution (a, x, y) [e.g., a uniform distribution on edges]
- add a suitable b [don’t ask me how to invent this b]
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges. Assume that edges of each color can be covered by N bi-cliques

- $x =$ the left end of the edge
- $y =$ the right end of the edge
- $a =$ the color of the edge
- $w =$ the index of a bi-clique covering the edge

then $H(a \mid x, b, w) + H(a \mid y, b, w) \leq H(a \mid b, w)$.

hence $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2H(w)$

it follows: $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b) + 2 \log N$

Problem: Given G, we want to estimate its bi-clique covering number

Recipe:

- take a distribution (a, x, y) [e.g., a uniform distribution on edges]
- add a suitable b [don’t ask me how to invent this b]
- observe $H(a \mid x, b) + H(a \mid y, b) \leq H(a \mid b)$
This is all about (bi-)clique covering!

Let G be bi-partite graph with colored edges. Assume that edges of each color can be covered by N bi-cliques

- $x =$ the left end of the edge
- $y =$ the right end of the edge
- $a =$ the color of the edge
- $w =$ the index of a bi-clique covering the edge

then $H(a | x, b, w) + H(a | y, b, w) \leq H(a | b, w)$.

hence $H(a | x, b) + H(a | y, b) \leq H(a | b) + 2H(w)$

it follows: $H(a | x, b) + H(a | y, b) \leq H(a | b) + 2 \log N$

Problem: Given G, we want to estimate its bi-clique covering number

Recipe:

- take a distribution (a, x, y) [e.g., a uniform distribution on edges]
- add a suitable b [don’t ask me how to invent this b]
- observe $H(a | x, b) + H(a | y, b) \not\leq H(a | b)$
- then [bi-clique covering number] $\geq 2(H(a | x, b) + H(a | y, b) - H(a | b))/2$
Open problems:

1. **[geometry]** The form of the cone of “entropic” points: infinitely many flat facets? or a curved surface?

2. **[complexity]** Another conditional inequality by F. Matúš: is it valid for Kolmogorov complexity?

3. **[combinatorics/complexity]** Lower bounds for clique covering: find examples where this technique is more effective than the conventional arguments (applications to communication complexity).